scholarly journals Sequential changes in ocean circulation and biological export productivity during the last glacial cycle: a model-data study

2019 ◽  
Author(s):  
Cameron M. O'Neill ◽  
Andrew McC. Hogg ◽  
Michael J. Ellwood ◽  
Bradley N. Opdyke ◽  
Stephen M. Eggins

Abstract. We conduct a model-data analysis of the ocean, atmosphere and terrestrial carbon system to understand their effects on atmospheric CO2 during the last glacial cycle. We use a carbon cycle box model SCP-M, combined with multiple proxy data for the atmosphere and ocean, to test for variations in ocean circulation and biological productivity across marine isotope stages spanning 130 thousand years ago to the present. The model is constrained by proxy data associated with a range of environmental conditions including sea surface temperature, salinity, ocean volume, sea ice cover and shallow water carbonate production. Model parameters for global ocean circulation, Atlantic meridional overturning circulation and Southern Ocean biological export productivity are optimised in each marine isotope stage, against proxy data for atmospheric CO2, δ13C and ∆14C and deep ocean δ13C, ∆14C and carbonate ion. Our model-data results suggest that global overturning circulation weakened at marine isotope stage 5d, coincident with a ∼ 25 ppm fall in atmospheric CO2 from the penultimate interglacial level. This change was followed by a further slowdown in Atlantic meridional overturning circulation and enhanced Southern Ocean biological export productivity at marine isotope stage 4 (∼−30 ppm). There was also a transient slowdown in Atlantic meridional overturning circulation at MIS 5b. In this model, the last glacial maximum was characterised by relatively weak global ocean and Atlantic meridional overturning circulation, and increased Southern Ocean biological export productivity (∼−15–20 ppm during MIS 2–4). Ocean circulation and Southern Ocean biology rebounded to modern values by the Holocene period. The terrestrial biosphere decreased by ∼ 500 Pg C in the lead up to the last glacial maximum, followed by a period of intense regrowth during the Holocene (∼ 750 Pg C). Slowing ocean circulation, a cooler ocean and, to a lesser extent, shallow carbonate dissolution, contributed ∼−75 ppm to atmospheric CO2 in the ∼ 100 thousand-year lead-up to the last glacial maximum, with a further ∼−10 ppm contributed during the glacial maximum. Our model results also suggest that an increase in Southern Ocean biological productivity was one of the ingredients required to achieve the last glacial maximum atmospheric CO2 level. The incorporation of longer-timescale data into quantitative ocean transport models, provides useful insights into the timing of changes in ocean processes, enhancing our understanding of the last glacial maximum and Holocene carbon cycle transition.

2021 ◽  
Vol 17 (1) ◽  
pp. 171-201
Author(s):  
Cameron M. O'Neill ◽  
Andrew McC. Hogg ◽  
Michael J. Ellwood ◽  
Bradley N. Opdyke ◽  
Stephen M. Eggins

Abstract. We conduct a model–data analysis of the marine carbon cycle to understand and quantify the drivers of atmospheric CO2 concentration during the last glacial–interglacial cycle. We use a carbon cycle box model, “SCP-M”, combined with multiple proxy data for the atmosphere and ocean, to test for variations in ocean circulation and Southern Ocean biological export productivity across marine isotope stages spanning 130 000 years ago to the present. The model is constrained by proxy data associated with a range of environmental conditions including sea surface temperature, salinity, ocean volume, sea-ice cover and shallow-water carbonate production. Model parameters for global ocean circulation, Atlantic meridional overturning circulation and Southern Ocean biological export productivity are optimized in each marine isotope stage against proxy data for atmospheric CO2, δ13C and Δ14C and deep-ocean δ13C, Δ14C and CO32-. Our model–data results suggest that global overturning circulation weakened during Marine Isotope Stage 5d, coincident with a ∼ 25 ppm fall in atmospheric CO2 from the last interglacial period. There was a transient slowdown in Atlantic meridional overturning circulation during Marine Isotope Stage 5b, followed by a more pronounced slowdown and enhanced Southern Ocean biological export productivity during Marine Isotope Stage 4 (∼ −30 ppm). In this model, the Last Glacial Maximum was characterized by relatively weak global ocean and Atlantic meridional overturning circulation and increased Southern Ocean biological export productivity (∼ −20 ppm during MIS 3 and MIS 2). Ocean circulation and Southern Ocean biological export productivity returned to modern values by the Holocene period. The terrestrial biosphere decreased by 385 Pg C in the lead-up to the Last Glacial Maximum, followed by a period of intense regrowth during the last glacial termination and the Holocene (∼ 600 Pg C). Slowing ocean circulation, a colder ocean and to a lesser extent shallow carbonate dissolution contributed ∼ −70 ppm to atmospheric CO2 in the ∼ 100 000-year lead-up to the Last Glacial Maximum, with a further ∼ −15 ppm contributed during the glacial maximum. Our model results also suggest that an increase in Southern Ocean biological export productivity was one of the ingredients required to achieve the Last Glacial Maximum atmospheric CO2 level. We find that the incorporation of glacial–interglacial proxy data into a simple quantitative ocean transport model provides useful insights into the timing of past changes in ocean processes, enhancing our understanding of the carbon cycle during the last glacial–interglacial period.


2019 ◽  
Vol 16 (20) ◽  
pp. 3997-4021 ◽  
Author(s):  
Hubertus Fischer ◽  
Jochen Schmitt ◽  
Michael Bock ◽  
Barbara Seth ◽  
Fortunat Joos ◽  
...  

Abstract. Using high-precision and centennial-resolution ice core information on atmospheric nitrous oxide concentrations and its stable nitrogen and oxygen isotopic composition, we quantitatively reconstruct changes in the terrestrial and marine N2O emissions over the last 21 000 years. Our reconstruction indicates that N2O emissions from land and ocean increased over the deglaciation largely in parallel by 1.7±0.3 and 0.7±0.3 TgN yr−1, respectively, relative to the Last Glacial Maximum level. However, during the abrupt Northern Hemisphere warmings at the onset of the Bølling–Allerød warming and the end of the Younger Dryas, terrestrial emissions respond more rapidly to the northward shift in the Intertropical Convergence Zone connected to the resumption of the Atlantic Meridional Overturning Circulation. About 90 % of these large step increases were realized within 2 centuries at maximum. In contrast, marine emissions start to slowly increase already many centuries before the rapid warmings, possibly connected to a re-equilibration of subsurface oxygen in response to previous changes. Marine emissions decreased, concomitantly with changes in atmospheric CO2 and δ13C(CO2), at the onset of the termination and remained minimal during the early phase of Heinrich Stadial 1. During the early Holocene a slow decline in marine N2O emission of 0.4 TgN yr−1 is reconstructed, which suggests an improvement of subsurface water ventilation in line with slowly increasing Atlantic overturning circulation. In the second half of the Holocene total emissions remain on a relatively constant level, but with significant millennial variability. The latter is still difficult to attribute to marine or terrestrial sources. Our N2O emission records provide important quantitative benchmarks for ocean and terrestrial nitrogen cycle models to study the influence of climate on nitrogen turnover on timescales from several decades to glacial–interglacial changes.


2009 ◽  
Vol 5 (4) ◽  
pp. 695-706 ◽  
Author(s):  
A. Tagliabue ◽  
L. Bopp ◽  
D. M. Roche ◽  
N. Bouttes ◽  
J.-C. Dutay ◽  
...  

Abstract. We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the change in ocean carbon export are used to evaluate the results. Overall, we find that while a reduction in ocean ventilation at the LGM is necessary to reproduce carbon-13 and carbon-14 observations, this circulation results in a low net sink for atmospheric CO2. In contrast, while biogeochemical processes contribute little to carbon isotopes, we propose that most of the change in atmospheric CO2 was due to such factors. However, the lesser role for circulation means that when all plausible factors are accounted for, most of the necessary CO2 change remains to be explained. This presents a serious challenge to our understanding of the mechanisms behind changes in the global carbon cycle during the geologic past.


2008 ◽  
Vol 4 (3) ◽  
pp. 191-203 ◽  
Author(s):  
T. Arsouze ◽  
J.-C. Dutay ◽  
M. Kageyama ◽  
F. Lacan ◽  
R. Alkama ◽  
...  

Abstract. Using a simple parameterisation that resolves the first order global Nd isotopic composition (hereafter expressed as εNd in an Ocean Global Circulation Model, we have tested the impact of different circulation scenarios on the εNd in the Atlantic for the Last Glacial Maximum (LGM), relative to a modern control run. Three different LGM freshwater forcing experiments are performed to test for variability in the εNd oceanic distribution as a function of ocean circulation. Highly distinct representations of the ocean circulation are generated in the three simulations, which drive significant differences in εNd, particularly in deep waters of the western part of the basin. However, at the LGM, the Atlantic is more radiogenic than in the modern control run, particularly in the Labrador basin and in the Southern Ocean. A fourth experiment shows that changes in Nd sources and bathymetry drive a shift in the εNd signature of the basin that is sufficient to explain the changes in the εNd signature of the northern end-member (NADW or GNAIW glacial equivalent) in our LGM simulations. All three of our LGM circulation scenarios show good agreement with the existing intermediate depth εNd paleo-data. This study cannot indicate the likelihood of a given LGM oceanic circulation scenario, even if simulations with a prominent water mass of southern origin provide the most conclusive results. Instead, our modeling results highlight the need for more data from deep and bottom waters from western Atlantic, where the εNd change in the three LGM scenarios is the most important (up to 3 εNd. This would also aid more precise conclusions concerning the evolution of the northern end-member εNd signature, and thus the potential use of εNd as a tracer of past oceanic circulation.


Science ◽  
2007 ◽  
Vol 316 (5821) ◽  
pp. 66-69 ◽  
Author(s):  
J. Lynch-Stieglitz ◽  
J. F. Adkins ◽  
W. B. Curry ◽  
T. Dokken ◽  
I. R. Hall ◽  
...  

2006 ◽  
Vol 7 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Jean Lynch-Stieglitz ◽  
William B. Curry ◽  
Delia W. Oppo ◽  
Ulysses S. Ninneman ◽  
Christopher D. Charles ◽  
...  

2009 ◽  
Vol 36 (15) ◽  
pp. n/a-n/a ◽  
Author(s):  
J. A. Mattias Green ◽  
Clare L. Green ◽  
Grant R. Bigg ◽  
Tom. P. Rippeth ◽  
James D. Scourse ◽  
...  

2009 ◽  
Vol 5 (3) ◽  
pp. 1463-1491 ◽  
Author(s):  
A. Tagliabue ◽  
L. Bopp ◽  
D. M. Roche ◽  
N. Bouttes ◽  
J.-C. Dutay ◽  
...  

Abstract. We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the change in ocean carbon export are used to evaluate the results. Overall, we find that while a reduction in ocean ventilation at the LGM is necessary to reproduce carbon-13 and carbon-14 observations, this circulation results in a low net sink for atmospheric CO2. In contrast, while biogeochemical processes contribute little to carbon isotopes, we can attribute over 90% of the change in atmospheric CO2 to such factors. The lesser role for circulation means that when all plausible factors are accounted for, over half of the necessary CO2 change remains to be explained. This presents a serious challenge to our understanding of the mechanisms behind changes in the global carbon cycle during the geologic past.


Sign in / Sign up

Export Citation Format

Share Document