LAFE und LAFO: Neue experimentelle und observationelle Untersuchungen von Land-Atmosphäre-Austauschprozessen

2021 ◽  
Author(s):  
Florian Späth ◽  
Diego Lange ◽  
Andreas Behrendt ◽  
Syed Saqlain Abbas ◽  
Alan Brewer ◽  
...  

<p>Der Austausch von Energie, Feuchte und Impuls zwischen der Atmosphäre und der Landoberfläche sowie die damit verbundenen Rückkopplungsprozesse sind maßgeblich für die Entwicklung der planetarischen Grenzschicht. Eine ungenaue Darstellung und Parametrisierung dieser Prozesse stellen eine Schwäche der heutigen Wetter- und Klimamodelle dar. Verbesserungen in diesen Bereichen werden einen signifikanten Beitrag zu besseren Simulationen der Wolkenbildung auf allen zeitlichen und räumlichen Skalen leisten. Dazu ist es notwendig, das System Land-Atmosphäre simultan in allen Kompartimenten zu vermessen. Dazu haben sowohl das LAFE- als auch das neue LAFO-Design mit deren Messgerätesynergien schon wichtige Beiträge geliefert. Mit Vergleichen zwischen Modellparametrisierungen und Beobachtungen können z.B. die Anwendbarkeit der Monin-Obukhov Ähnlichkeitstheorie (MOST) bei natürlicher heterogener Landoberfläche überprüft oder neue Parametrisierungen entwickelt werden.</p> <p>Das LAFE (Land-Atmosphere Feedback Experiment, Wulfmeyer et al. 2018) wurde im August 2017 als Messkampagne am Standort des Atmospheric Radiation Measurements (ARM) Program Southern Great Plains in Oklahoma, USA, umgesetzt. Für Grenzschichtbeobachtungen kamen scannende Dopplerlidar-Systeme für Windmessungen, Rotations-Ramanlidar für Temperatur- und Feuchtemessungen und Differentielles Absorptionslidar zur Wasserdampfmessung in der Grenzschicht zum Einsatz. An der Landoberfläche wurden meteorologische und pflanzendynamische Variablen, Energiebilanz, sowie Bodenfeuchte und -temperatur an Eddy-Kovarianz-Stationen erfasst. Diese Messungen verfolgen wir auch am Land-Atmosphäre Feedback Observatorium (LAFO, lafo.uni-hohenheim.de) an der Universität Hohenheim in Stuttgart (Deutschland) um neben Feldexperimenten auch lange Zeitreihen zu erfassen. Hier werden Lidarmessungen operationell betrieben und ergänzt durch Messungen eines Doppler-Wolkenradars. An der Landoberfläche messen Eddy-Kovarianz-Stationen und ein Netzwerk von Bodenfeuchte- und -temperatursensoren, sowie wird der Vegetationsstatus im Untersuchungsgebiet erfasst. Diese Sensorsynergie im LAFO ist Prototyp für GLAFOs (Gewex LAFOs, Wulfmeyer et al. 2020) zur Etablierung dieser Messungen in verschiedenen Klimaregionen der Erde.</p> <p>In diesem Beitrag stellen wir das Messkonzept vor und wie Beobachtungen für die Untersuchung und Verbesserung von Grenzschicht- und Turbulenz-Parametrisierungen eingesetzt werden können. Dies zeigen wir mit Messergebnissen von LAFE und LAFO mit Abschätzungen der Flüsse, die durch Kombination der Feuchte-, Temperatur- und Windprofile in Bodennähe bestimmt werden und die Ableitung entsprechenden Ähnlichkeitsbeziehung sowohl für Entrainment-Flüsse als auch für MOST ermöglichen.</p>

2020 ◽  
Vol 20 (6) ◽  
pp. 3483-3501 ◽  
Author(s):  
Xiaojian Zheng ◽  
Baike Xi ◽  
Xiquan Dong ◽  
Timothy Logan ◽  
Yuan Wang ◽  
...  

Abstract. The aerosol indirect effect on cloud microphysical and radiative properties is one of the largest uncertainties in climate simulations. In order to investigate the aerosol–cloud interactions, a total of 16 low-level stratus cloud cases under daytime coupled boundary-layer conditions are selected over the southern Great Plains (SGP) region of the United States. The physicochemical properties of aerosols and their impacts on cloud microphysical properties are examined using data collected from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at the SGP site. The aerosol–cloud interaction index (ACIr) is used to quantify the aerosol impacts with respect to cloud-droplet effective radius. The mean value of ACIr calculated from all selected samples is 0.145±0.05 and ranges from 0.09 to 0.24 at a range of cloud liquid water paths (LWPs; LWP=20–300 g m−2). The magnitude of ACIr decreases with an increasing LWP, which suggests a diminished cloud microphysical response to aerosol loading, presumably due to enhanced condensational growth processes and enlarged particle sizes. The impact of aerosols with different light-absorbing abilities on the sensitivity of cloud microphysical responses is also investigated. In the presence of weak light-absorbing aerosols, the low-level clouds feature a higher number concentration of cloud condensation nuclei (NCCN) and smaller effective radii (re), while the opposite is true for strong light-absorbing aerosols. Furthermore, the mean activation ratio of aerosols to CCN (NCCN∕Na) for weakly (strongly) absorbing aerosols is 0.54 (0.45), owing to the aerosol microphysical effects, particularly the different aerosol compositions inferred by their absorptive properties. In terms of the sensitivity of cloud-droplet number concentration (Nd) to NCCN, the fraction of CCN that converted to cloud droplets (Nd∕NCCN) for the weakly (strongly) absorptive regime is 0.69 (0.54). The measured ACIr values in the weakly absorptive regime are relatively higher, indicating that clouds have greater microphysical responses to aerosols, owing to the favorable thermodynamic condition. The reduced ACIr values in the strongly absorptive regime are due to the cloud-layer heating effect induced by strong light-absorbing aerosols. Consequently, we expect larger shortwave radiative cooling effects from clouds in the weakly absorptive regime than those in the strongly absorptive regime.


2015 ◽  
Vol 8 (11) ◽  
pp. 11323-11368 ◽  
Author(s):  
M. P. Jensen ◽  
D. Holdridge ◽  
P. Survo ◽  
R. Lehtinen ◽  
S. Baxter ◽  
...  

Abstract. In the fall of 2013, the Vaisala RS41-SG (4th generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity and pressure. In order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Facility site in north Central Oklahoma USA. During 3–8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results suggest that the RS92 and RS41 measurements generally agree within manufacturer specified tolerances with notable exceptions when exiting liquid cloud layers where the "wet bulbing" effect is mitigated in the RS41 observations. The RS41 measurements also appear to show a smaller impact from solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions, but under most observational conditions the RS41 and RS92 measurements agree within the manufacturer specified limits and so a switch to RS41 radiosondes will have little impact on long-term observational records.


Sign in / Sign up

Export Citation Format

Share Document