measurement site
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 30)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 906 (1) ◽  
pp. 012096
Author(s):  
Jakub Šrek ◽  
Milan Mikoláš

Abstract The study discusses the use of the electronic initiation system and software modeling to reduce ground vibrations induced by blasting works. The main part compares non-electric and electronic initiation systems, namely how the system-type affects the peak vector sum (PVS). The study evaluates blasting works conducted between 2011 and 2020 at the Velkolom Čertovy schody quarry. KonĘprusy limestone deposit mined from a quarry Velkolom Certovy schody belongs to one of the most significant mining locations in the Czech Republic. The main mining technology used in breaking rock mass at the Velkolom Čertovy schody quarry is blasting (namely bench blasts and overburden blasts). Blasting generates ground vibrations that affect the surroundings of the quarry. The information on ground vibrations is continuously collected at the predetermined measurement sites through a monitoring network. The network constantly monitors peak particle velocity (PPV), PVS, frequency, and other parameters. The key measurement site appears to be Prošek Dome (M15) in the Koneprusy Caves. At this measurement site, the limit value of the PVS is stipulated at 3.0 mm s-1. If this value is exceeded, it is necessary to establish measures which lead to blasting restrictions (e. g. decrease in the weight of the deck charge, bench blast rows reduction). To meet the criteria, the Velkolom Čertovy schody-západ quarry started to use the electronic initiation system (E*STAR) along with the specialized software Paradigm for vibration modeling. This study, using data collected at the measurement sites Prošek Dome (M15) and KonĘprusy No. 19, compares the PVS generated by the non-electric initiation system (Shock*Star) without modeling and by the electronic initiation system (E*STAR) with modeling. As reference years for non-electric initiation were stipulated years 2011, 2012, 2013, and for electronic initiation years 2018, 2019, and 2020. An analysis of 467 bench blasts executed at the quarry was conducted - or rather, the analysis of the PVS values collected at the pre-selected measurement sites. The analysis shows that the average value of the PVS at the measurement site Prošek Dome (M15) decreased from 2.05 mm s-1 to 1.64 mm s-1 when using the electronic initiation system with vibration modeling. The decrease in the PVS value was observed at the measurement site KonĘprusy No. 19 as well, namely from 0.48 mm s-1 to 0.31 mm s-1. In addition, significantly fewer occasions of exceeding the PVS limit value were reported at the measurement site Prošek Dome (M15), specifically from 6.7 % to 2.7 % of the blasting works conducted within the selected reference years. The study also describes fundamental principles of work with the Paradigm software. Based on the vibration analysis, parameters of the bench blasts need to be adjusted: timing, number of deck charges or rows, etc. Finally, the study summarizes the benefits of the electronic initiation system with modeling.


2021 ◽  
Vol 14 (9) ◽  
pp. 5887-5911
Author(s):  
Matthias M. Frey ◽  
Frank Hase ◽  
Thomas Blumenstock ◽  
Darko Dubravica ◽  
Jochen Groß ◽  
...  

Abstract. In this study, we present column-averaged dry-air mole fractions of CO2 (XCO2), CH4 (XCH4) and CO (XCO) from a recently established measurement site in Gobabeb, Namibia. Gobabeb is a hyperarid desert site at the sharp transition zone between the sand desert and the gravel plains, offering unique characteristics with respect to surface albedo properties. Measurements started in January 2015 and are performed utilizing a ground-based Fourier transform infrared (FTIR) EM27/SUN spectrometer of the COllaborative Carbon Column Observing Network (COCCON). Gobabeb is the first measurement site observing XCO2 and XCH4 on the African mainland and improves the global coverage of ground-based remote-sensing sites. In order to achieve the high level of precision and accuracy necessary for meaningful greenhouse gas observations, we performed calibration measurements for 8 d between November 2015 and March 2016 with the COCCON reference EM27/SUN spectrometer operated at the Karlsruhe Institute of Technology. We derived scaling factors for XCO2, XCH4 and XCO with respect to the reference instrument that are close to 1.0. We compare the results obtained in Gobabeb to measurements from the Total Carbon Column Observing Network (TCCON) sites at Réunion Island and Lauder. We choose these TCCON sites because, while 4000 km apart, the instruments at Gobabeb and Réunion Island operate at roughly the same latitude. The Lauder station is the southernmost TCCON station and functions as a background site without a pronounced XCO2 seasonal cycle. We find a good agreement for the absolute Xgas values, apart from an expected XCH4 offset between Gobabeb and Lauder due to significantly different tropopause height, as well as representative intraday variability between TCCON and COCCON. Together with the absence of long-term drifts, this highlights the quality of the COCCON measurements. In the southern hemispheric summer, we observe lower XCO2 values at Gobabeb compared to the TCCON stations, likely due to the influence of the African biosphere. We performed coincident measurements with the Greenhouse Gases Observing Satellite (GOSAT), where GOSAT observed three nearby specific observation points, over the sand desert south of the station, directly over Gobabeb and over the gravel plains to the north. GOSAT H-gain XCO2 and XCH4 agree with the EM27/SUN measurements within the 1σ uncertainty limit. The number of coincident soundings is limited, but we confirm a bias of 1.2–2.6 ppm between GOSAT M-gain and H-gain XCO2 retrievals depending on the target point. This is in agreement with results reported by a previous study and the GOSAT validation team. We also report a bias of 5.9–9.8 ppb between GOSAT M-gain and H-gain XCH4 measurements which is within the range given by the GOSAT validation team. Finally, we use the COCCON measurements to evaluate inversion-optimized CAMS model data. For XCO2, we find high biases of 0.9 ± 0.5 ppm for the Orbiting Carbon Observatory-2 (OCO-2) assimilated product and 1.1 ± 0.6 ppm for the in situ-driven product with R2 > 0.9 in both cases. These biases are comparable to reported offsets between the model and TCCON data. The OCO-2 assimilated model product is able to reproduce the drawdown of XCO2 observed by the COCCON instrument at the beginning of 2017, as opposed to the in situ-optimized product. Also, for XCH4, the observed biases are in line with prior model comparisons with TCCON.


2021 ◽  
Author(s):  
Sebastian Donner ◽  
Steffen Dörner ◽  
Joelle Buxmann ◽  
Steffen Beirle ◽  
David Campbell ◽  
...  

<p>Multi-AXis (MAX)-Differential Optical Absorption Spectroscopy (DOAS) instruments record spectra of scattered sun light under different elevation angles. From such measurements tropospheric vertical column densities (VCDs) and vertical profiles of different atmospheric trace gases and aerosols can be determined for the lower troposphere. These measurements allow a simultaneous observation of multiple trace gases, e.g. formaldehyde (HCHO), glyoxal (CHOCHO) and nitrogen dioxide (NO<sub>2</sub>), with the same measurement setup. Since November 2018, a MAX-DOAS instrument has been operating at Bayfordbury Observatory, which is located approximately 30 km north of London. This measurement site is operated by the University of Hertfordshire and equipped with an AERONET station, a LIDAR and multiple instruments to measure meteorological quantities and solar radiation. Depending on the prevailing wind direction the air masses at the measurement site can be dominated by the pollution of London (SE to SW winds) or rather pristine air (northerly winds).</p><p>First results already showed that the highest formaldehyde and glyoxal columns are observed for southerly to southeasterly winds indicating the influence of the anthropogenic emissions of London. However, the detailed patterns of the different trace gases were found to be more complex. Therefore, this measurement site is well suited to study the influence of anthropogenic pollution on the atmospheric composition and chemistry at a rather pristine location in the vicinity of London, a major European capital with about 10 million inhabitants and 4 major international airports.</p><p>In this study, trace gas and aerosol profiles are retrieved using the MAinz Profile Algorithm (MAPA) with a focus on tropospheric HCHO which plays an important role in tropospheric chemistry. The HCHO results are combined with the results of other trace species such as NO<sub>2</sub>, CHOCHO and aerosols in order to identify pollution levels, emission sources and different chemical regimes.</p>


2021 ◽  
Author(s):  
Friedrich Klappenbach ◽  
Jia Chen ◽  
Adri Wenzel ◽  
Andreas Forstmaier ◽  
Florian Dietrich ◽  
...  

<p>In order to infer greenhouse gas emissions from a source region, several top-down approaches can confirm or constrain the existing emission inventories. In this work an adopted version of a Bayesian inversion framework [1] will be presented. Methane emissions are derived from the column concentrations measured with six EM27/SUN FTIR spectrometers using ground based direct sunlight spectroscopy. The measurement campaign was carried out in the San Francisco Bay Area in 2016.  </p><p>The framework uses the STILT generated footprints, which represent the surface-interaction of an air-parcel on its trajectory to the measurement site and thus describe the sensitivity of the measured concentration at a certain location to its surrounding source emissions. The dot product of the footprint matrix with a gridded emission inventory matrix results in expected concentration enhancements at the measurement site as a prior estimate. Here, we use the 1km-gridded local methane inventory by the Bay Area Air Quality Management District (BAAQMD).</p><p>Due to the long-term stability of methane, the air parcel holds a non-zero background concentration, which is not negligible. This poses a major challenge in the inversion. The existing Bayesian framework constrains a background concentration as well as a scaling factor for the inventory from the measurements. Within the existing framework, the assumption is made that all instruments eventually experience the same, time dependent background concentration. This assumption holds well for flat terrain with undisturbed wind-fields.</p><p>However, in the presence of complex topography, such as San Francisco Bay Area, the background source regions may differ significantly for the individual measurement sites. Here, we present an approach to account for differing background concentrations seen by multiple measurement sites:</p><p>The adopted inversion allows to have individual background concentrations for each measurement site. This is strongly constrained by background covariances, which represent the background in common with the remaining measurement sites. These covariances are calculated from the STILT trajectories.</p><p>[1] Jones, T. S., Franklin, J. E., Chen, J., Dietrich, F., Hajny, K. D., Paetzold, J. C., Wenzel, A., Gately, C., Gottlieb, E., Parker, H., Dubey, M., Hase, F., Shepson, P. B., Mielke, L. H., and Wofsy, S. C.: Assessing Urban Methane Emissions using Column Observing Portable FTIR Spectrometers and a Novel Bayesian Inversion Framework, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1262, in review, 2021.</p>


2021 ◽  
Author(s):  
Myojeong Gu ◽  
Carl-Fredrik Enell ◽  
Janis Pukite ◽  
Ulrich Platt ◽  
Uwe Raffalski ◽  
...  

<p>Recent research on stratospheric ozone indicates signs of ozone recovery, but on the other hand, ozone recovery is also expected to be delayed by many aspects (e.g climate change). Therefore, it is important to monitor continuously stratospheric trace gases to predict the future evolution of the Arctic ozone and other trace gases which are involved in the ozone depletion chemistry. OClO is well known as an indicator of the stratospheric chlorine activation and can be measured using remote sensing techniques.</p><p>In this study, we present long-term measurements of OClO slant column densities at Kiruna, Sweden (67.84°N, 20.41°E) which were obtained from the ground-based zenith sky DOAS instruments since 1997. The measurement site is located north of the polar circle in which the variability of the OClO abundance depends on the state of stratospheric chlorine activation but also whether the polar vortex is located above the measurement site.</p><p>The aim of this study is to give an overview of the measured stratospheric OClO abundance for 19 years, and to investigate the dominant parameters affecting ozone and OClO during periods of stratospheric chlorine activation. One particular focus is on the parameters which trigger the activation and de-activation at the beginning and the end of the polar winter.</p><p>To do so, we compare the general dependencies of OClO on other trace gases and meteorological conditions.</p>


2021 ◽  
Author(s):  
Danica Antonijevic ◽  
Shrijana Vaidya ◽  
Claudia Vincenz ◽  
Nicole Jurisch ◽  
Nathalia Pehle ◽  
...  

<p>When drained for e.g. agricultural use, natural peatlands turn from a net C sink to a net C source. It is therefore suggested that restoration of peatlands, despite of increasing CH<sub>4</sub> emissions, holds the potential to mitigate climate change by reducing their overall global warming potential. The time span required for this transition, however, is fairly unknown. Moreover, greenhouse gas emission measurements from peatlands are often limited to a couple of years only. This is problematic in so far, as most peatland ecosystems are in transitional stage due to restoration related disturbances (e.g. enhanced water table) and global climate change. This might affect GHG emissions in one way or another which emphasizes the necessity of longer-term observations to avoid misinterpretations and premature conclusions.        <br>Exemplary for that, we present 14 consecutive years of CH<sub>4</sub> flux measurements following restoration at a formerly long-term drained fen grassland within the Peene river catchment (near the town of Zarnekow: 53.52⁰N, 12.52⁰E). Restoration of peatland was done by simply opening the dike. Thus, no water table management was established and water table was strongly fluctuating.  CH<sub>4</sub> flux measurements were conducted at two sites (restored vs. non-restored) using non-flow-through non-steady-state (NFT-NSS) opaque chambers.  <br>Throughout the 14 years study period, distinct stages of an ecosystems transition, differing in their impact on measured CH<sub>4</sub> emissions, were observed. During the first two years of the measurement period directly following restoration in autumn 2004, an eutrophic shallow lake was formed. This development was accompanied by a fast vegetation shift from dying off cultivated grasses to submerged hydrophytes and helophytes and evidenced substantially increased CH<sub>4</sub> emissions. Since 2008, helophytes have gradually spread from the shore line into the established shallow lake especially during drying years. This process was only periodically delayed by exceptional inundation, such as in 2011, 2012 and 2015, and finally resulted in coverage of the measurement site in 2016 and 2017. While, especially the period between 2009 and 2015 showed exceptionally high CH<sub>4</sub> emissions, these decreased significantly after helophytes were established at the measurement site. Hence, CH<sub>4</sub> emissions only decreased after ten years transition following restoration and potentially reaching a new steady state.</p>


2021 ◽  
Author(s):  
Attila Buzás ◽  
Veronika Barta ◽  
Tamás Horváth ◽  
József Bór

Abstract. In 2003, a decreasing trend has been reported in the long-term (1962–2001) fair weather atmospheric electric potential gradient (PG) measured in the Széchenyi István Geophysical Observatory (NCK, 47°38' N, 16°43' E), Hungary, Central Europe. The origin of this reduction has been the subject of a long-standing debate, due to a group of trees near the measurement site which reached significant height since the measurements of PG have started. Those trees have contributed to the lowering of the ambient vertical electric field due to their electrostatic shielding effect. In the present study, we attempt to reconstruct the true long-term variation of the vertical atmospheric field at NCK. The time-dependent shielding effect of trees at the measurement site was calculated to remove the corresponding bias from the recorded time series. A numerical model based on electrostatic theory was set up to take into account the electrostatic shielding of the local environment. The validity of the model was verified by on-site measurement campaigns. The changing height of the trees between 1962 and 2017 was derived from national average age-height diagrams for each year. Modelling the time-dependent electrical shielding effect of the trees at NCK revealed that local effects played a pivotal role in the long-term decrease. The results suggest that earlier attempts could not quantify the shielding effect of the trees at NCK accurately. It was found that the reconstructed PG time series at NCK exhibits a significant increase between 1962 and 1997 followed by a decaying trend since 1997. It is pointed out that long-term variation in summertime and wintertime PG averages should be analyzed separately as these may contribute to trends in the annual mean values rather differently.


2021 ◽  
Author(s):  
Matthias M. Frey ◽  
Frank Hase ◽  
Thomas Blumenstock ◽  
Darko Dubravica ◽  
Jochen Groß ◽  
...  

Abstract. In this study we present column-averaged dry-air mole fractions of CO2 (XCO2), CH4 (XCH4) and CO (XCO) from a recently established measurement site in Gobabeb, Namibia. Gobabeb is a hyperarid desert site at the sharp transition zone between the sand desert and the gravel plains, offering unique characteristics with respect to surface albedo properties. Measurements started January 2015 and are performed utilizing a ground-based Fourier transform infrared (FTIR) EM27/SUN spectrometer of the COllaborative Carbon Column Observing Network (COCCON). Gobabeb is the first measurement site observaing XCO2 and XCH4 on the African mainland and improves the global coverage of ground-based remote-sensing sites. In order to achieve the high level of precision and accuracy necessary for meaningful greenhouse gas observations, we performed calibration measurements for eight days between November 2015 and March 2016 with the COCCON reference EM27/SUN spectrometer operated at the Karlsruhe Institute of Technology. We derived scaling factors for XCO2, XCH4 and XCO with respect to the reference instrument that are close to 1.0. We compare the results obtained in Gobabeb to measurements at Reunion Island and Lauder from the Total Carbon Column Observing Network (TCCON). We choose these TCCON sites because, while 4000 km apart, the instruments at Gobabeb and Reunion Island operate at roughly the same latitude. The Lauder station is the southernmost TCCON station and functions as a background site without a pronounced XCO2 seasonal cycle. We find a good agreement for the absolute Xgas values and representative diurnal variability. Together with the absence of long term drifts this highlights the quality of the COCCON measurements. In Southern hemispheric summer we observe lower XCO2 values at Gobabeb compared to the TCCON stations, likely due to the influence of the African biosphere. We performed coincident measurements with the Greenhouse Gases Observing Satellite (GOSAT), where GOSAT observed three nearby specific observation points, over the sand desert south of the station, directly over Gobabeb and over the gravel plains to the north. GOSAT H-gain XCO2 and XCH4 agree with the EM27/SUN measurements within the 1 σ uncertainty limit. The number of coincidence soundings is limited, but we confirm a bias of 1.2–2.6 ppm between GOSAT M-gain and H-gain XCO2 soundings depending on the target point. This is in agreement with results reported by a previous study and the GOSAT validation team. We also report a bias of 5.9–9.8 ppb between GOSAT M-gain and H-gain XCH4 measurements which is within the range given by the GOSAT validation team. Finally we use the COCCON measurements to evaluate inversion-optimized CAMS model data. For XCO2 we find high biases of 0.9 ± 0.5 ppm for the OCO-2 assimilated product and 1.1 ± 0.6 ppm for the in situ-driven product with R2 > 0.9 in both cases. These biases are comparable to reported offsets between the model and TCCON data. The OCO-2 assimilated model product is able to reproduce the drawdown of XCO2 observed by the COCCON instrument beginning of 2017, opposed to the in situ-optimized product. Also for XCH4 the observed biases are in line with prior model comparisons with TCCON.


Sign in / Sign up

Export Citation Format

Share Document