scholarly journals MUWS (Microbiology in Urban Water Systems) – an interdisciplinary approach to study microbial communities in urban water systems

2010 ◽  
Vol 3 (1) ◽  
pp. 43-64
Author(s):  
P. Deines ◽  
R. Sekar ◽  
H. S. Jensen ◽  
S. Tait ◽  
J. B. Boxall ◽  
...  

Abstract. Microbiology in Urban Water Systems (MUWS) is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems are large, highly interconnected and dynamic, and difficult to control. Sewer systems are also large and subject to time varying inputs and demands. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we aim to link the abundance and diversity of microorganisms to physical and engineering variables so that novel insights into the ecology of microorganisms within both water distribution systems and sewer networks can be explored. By presenting the details of this multidisciplinary approach, and the principals behind the molecular microbiological methods and techniques that we use, this paper will demonstrate the potential of an integrated approach to better understand urban water system function and so meet future challenges.

2010 ◽  
Vol 3 (2) ◽  
pp. 91-99 ◽  
Author(s):  
P. Deines ◽  
R. Sekar ◽  
H. S. Jensen ◽  
S. Tait ◽  
J. B. Boxall ◽  
...  

Abstract. Microbiology in Urban Water Systems (MUWS) is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems and sewer networks are both large, highly interconnected, dynamic, subject to time and varying inputs and demands, and difficult to control. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance within urban water infrastructure systems is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we ultimately aim to link microbial community abundance, diversity and function to physical and engineering variables so that novel insights into the performance and management of both water distribution systems and sewer networks can be explored. By presenting the details and principals behind the molecular microbiological techniques that we use, this paper demonstrates the potential of an integrated approach to better understand how urban water system function, and so meet future challenges.


1988 ◽  
Vol 20 (11-12) ◽  
pp. 153-159 ◽  
Author(s):  
William D. Rosenzweig ◽  
Wesley O. Pipes

In recent years various types of imperfect fungi have been isolated from water systems. Fungal spores and mycelia can be inactivated by low concentrations of chlorine in the laboratory but survive in some habitats in water distribution systems. This report describes a field study which provides evidence that some types of fungi are able to grow in water distribution systems. Replicate samples from private residences were used to demonstrate that fungal densities are sometimes much greater than the levels which could be explained by adventitious spores. The microbiological content of water samples from fire hydrants was often significantly different from that of water samples from nearby private residences. The treated water input to distribution systems was found to be significantly lower in fungus content than water from private residences. Elevated storage tanks open to the atmosphere appear to be significant sources of fungal input to some systems.


Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 286 ◽  
Author(s):  
Muhammad Atif Nisar ◽  
Kirstin E. Ross ◽  
Melissa H. Brown ◽  
Richard Bentham ◽  
Harriet Whiley

Legionella pneumophila is an opportunistic waterborne pathogen of public health concern. It is the causative agent of Legionnaires’ disease (LD) and Pontiac fever and is ubiquitous in manufactured water systems, where protozoan hosts and complex microbial communities provide protection from disinfection procedures. This review collates the literature describing interactions between L. pneumophila and protozoan hosts in hospital and municipal potable water distribution systems. The effectiveness of currently available water disinfection protocols to control L. pneumophila and its protozoan hosts is explored. The studies identified in this systematic literature review demonstrated the failure of common disinfection procedures to achieve long term elimination of L. pneumophila and protozoan hosts from potable water. It has been demonstrated that protozoan hosts facilitate the intracellular replication and packaging of viable L. pneumophila in infectious vesicles; whereas, cyst-forming protozoans provide protection from prolonged environmental stress. Disinfection procedures and protozoan hosts also facilitate biogenesis of viable but non-culturable (VBNC) L. pneumophila which have been shown to be highly resistant to many water disinfection protocols. In conclusion, a better understanding of L. pneumophila-protozoan interactions and the structure of complex microbial biofilms is required for the improved management of L. pneumophila and the prevention of LD.


1993 ◽  
Vol 46 (5) ◽  
pp. 183-186
Author(s):  
Charles Pickel

Electric, gas and water distribution systems can have an extremely long life when properly designed, installed and maintained. MLGW is proof positive that aging distribution systems can be managed in an effective manner. Customer satisfaction is a high priority with Division management. According to a recent survey, Memphians enjoy the lowest average monthly utility bills among the 25 largest cities in the United States.


2014 ◽  
Vol 50 (8) ◽  
pp. 6447-6465 ◽  
Author(s):  
Jean-Pierre Bardet ◽  
Richard Little

Sign in / Sign up

Export Citation Format

Share Document