fungal spores
Recently Published Documents


TOTAL DOCUMENTS

1217
(FIVE YEARS 319)

H-INDEX

62
(FIVE YEARS 9)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 210
Author(s):  
Junior Bernardo Molina-Hernandez ◽  
Jessica Laika ◽  
Yeimmy Peralta-Ruiz ◽  
Vinay Kumar Palivala ◽  
Silvia Tappi ◽  
...  

This research aimed to evaluate the impact of atmospheric cold plasma (ACP) treatment on the fungal spores naturally present in sundried tomatoes, as well as their influence on the physico-chemical properties and antioxidant activity. ACP was performed with a Surface Dielectric Barrier Discharge (SDBD), applying 6 kV at 23 kHz and exposure times up to 30 min. The results showed a significant reduction of mesophilic aerobic bacteria population and of filamentous fungi after the longer ACP exposure. In particular, the effect of the treatment was assessed on Aspergillus rugulovalvus (as sensible strain) and Aspergillus niger (as resistant strain). The germination of the spores was observed to be reliant on the species, with nearly 88% and 32% of non-germinated spores for A. rugulovalvus and A. niger, respectively. Fluorescence probes revealed that ACP affects spore viability promoting strong damage to the wall and cellular membrane. For the first time, the sporicidal effect of ACP against A. rugulovalvus is reported. Physicochemical parameters of sundried tomatoes such as pH and water activity (aw) were not affected by the ACP treatment; on the contrary, the antioxidant activity was not affected while the lycopene content was significantly increased with the increase in ACP exposure time (p ≤ 0.05) probably due to increased extractability.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah Fink ◽  
Anke Burmester ◽  
Uta‐Christina Hipler ◽  
Claudia Neumeister ◽  
Marcus R. Götz ◽  
...  

2022 ◽  
Author(s):  
Sachin Patade ◽  
Vaughan Phillips ◽  
Deepak Waman ◽  
Akash Deshmukh ◽  
Ashok Kumar Gupta ◽  
...  

Abstract. A new empirical parameterization (EP) for multiple groups of primary biological aerosol particles (PBAPs) is implemented in the aerosol cloud model (AC) to investigate their roles as ice-nucleating particles (INPs). The EP describes the heterogeneous ice nucleation by (1) fungal spores, (2) bacteria, (3) pollen, (4) detritus of plants, animals, and viruses, and (5) algae. Each group includes fragments from the originally emitted particles. A high-resolution simulation of a midlatitude mesoscale squall line by AC is validated against airborne and ground observations. Sensitivity tests are carried out by varying the initial vertical profiles of the loadings of individual PBAP groups. The resulting changes in warm and ice microphysical parameters are investigated. Overall, PBAPs have little effect on the ice phase, especially in the convective region. In the stratiform region, increasing the initial PBAP loadings by a factor of 100 resulted in less than 60 % change in ice number concentrations. The total ice concentration is mostly controlled by various mechanisms of secondary ice production (SIP). However, when SIP is artificially prohibited in sensitivity tests, increasing the PBAP loading by a factor of 100 has no significant effect on the ice phase. Further sensitivity tests revealed that PBAPs have little effect on surface precipitation as well as on shortwave and longwave flux.


2022 ◽  
Vol 9 ◽  
Author(s):  
Donát Magyar ◽  
John T. Van Stan ◽  
Kandikere R. Sridhar

You may not pay much attention to fungi growing on the bark of trees in your neighborhood, but there are many fungal species that scientists know have joined the “bark side.” The fungi living on bark do many interesting and surprising things. For example, bark fungi may prowl the bark in search of resources or new habitats. Fungi create tiny versions of themselves, called spores, which can use “the force” (of nature, like blowing wind, or flowing water) to move from one place to another on the bark. In this article, we introduce the microscopic war waging on the bark of your neighborhood trees, and present some of the fungi warriors of the bark side. We describe how some fungal spores use the force to stalk the bark (and beyond) during storms and discuss why fungi-bark interactions are another important reason to preserve and protect our trees.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 50
Author(s):  
Magdalena Frąc ◽  
Joanna Kaczmarek ◽  
Małgorzata Jędryczka

In contrast to the long-lasting taxonomic classification of Plenodomus lingam and P. biglobosus as one species, formerly termed Leptosphaeria maculans, both species form separate monophyletic groups, comprising sub-classes, differing considerably with epidemiology towards Brassicaceae plants. Considering the great differences between P. lingam and P. biglobosus, we hypothesized their metabolic capacities vary to a great extent. The experiment was done using the FF microplates (Biolog Inc., Hayward, CA, USA) containing 95 carbon sources and tetrazolium dye. The fungi P. lingam and P. biglobosus subclade ‘brassicae’ (3 isolates per group) were cultured on PDA medium for 6 weeks at 20 °C and then fungal spores were used as inoculum of microplates. The test was carried out in triplicate. We have demonstrated that substrate richness, calculated as the number of utilized substrates (measured at λ490 nm), and the number of substrates allowing effective growth of the isolates (λ750 nm), showed significant differences among tested species. The most efficient isolate of P. lingam utilized 36 carbon sources, whereas P. biglobosus utilized 60 substrates. Among them, 25–29 carbon sources for P. lingam and 34–48 substrates for P. biglobosus were efficiently used, allowing their growth. Cluster analysis based on Senath criteria divided P. biglobosus into two groups and P. lingam isolates formed one group (33% similarity). We deduce the similarities between the tested species help them coexist on the same host plant and the differences greatly contribute to their different lifestyles, with P. biglobosus being less specialized and P. lingam coevolving more strictly with the host plant.


Author(s):  
Jun Zhang ◽  
Xiao-zhong Huang ◽  
Jia-le Wang ◽  
Richard HW Bradshaw ◽  
Tao Wang ◽  
...  

Precipitation has been suggested as a crucial influencing factor in the primary productivity in arid and semi-arid regions, yet how moisture fluctuation in an arid mountain-basin system of the north Qinghai–Tibetan Plateau has affected human activities is poorly understood. Here, we reconstruct the variations of grazing intensity in high elevations and regional humidity based on independent and high-resolution records of Sporormiella-type coprophilous fungal spores and pollen grains in the same well-dated sediment core from Lake Tian’E in the western Qilian Mountains over the past 3500 years. We find that stronger grazing activity was associated with low regional effective moisture, and propose that the drier regional climate pushed people and their livestock into the mountainous areas. A notable exception was a reduction of human and grazing activities in arid region with high mountains during 380–580 CE caused by centennial-length dry and cold conditions. In addition, it is also noteworthy that intensified grazing activity occurred during 580–720 CE and after ∼1920 CE, corresponding to a warmer and wetter climate and diverse subsistence strategies with social developments in the lowlands of the Hexi Corridor. Our findings potentially provide a historical reference for understanding how ancient people adapted to the climate change in arid region with high mountains.


Author(s):  
Concepción De Linares ◽  
David Navarro ◽  
Rut Puigdemunt ◽  
Jordina Belmonte

Fungal spores are universal atmospheric components associated to allergic reactions. Alternaria (Ascomycota) is considered the most allergenic spore taxa. Alt a 1 is the major allergen of Alternaria and is present also in other Pleosporales. In this study, standard Hirst-based sampling and analyzing methods for measuring spore daily concentrations of Alternaria, Curvularia, Drechslera-Helminthosporium, Epicoccum, Leptosphaeria, Pithomyces, Pleospora and Stemphyllium (all included in the taxon Pleosporales) have been used besides two high-volume samplers, Burkard Cyclone (2017) and MCV CAV-A/mb (2019-2020), and ELISA Kits for measuring the allergen. The detection and quantification of Alt a 1 was only possible in the samples from the MCV sampler. Although Alt a 1 was better correlated with Alternaria spores than with Pleosporales spores, the three of them showed high correlations. It is shown, for the first time, a high and significant correlation of Alt a 1 with temperature, a negative one with relative humidity and no correlation with precipitation. The aerobiological monitoring of these three elements ensures the best information for understanding the affectation to allergy sufferers but, if not possible, as a minimum public health service aiming at the detection, treatment and prevention of allergy, the study of the airborne Alternaria spores should be ensured.


Author(s):  
M. Voinot ◽  
F. Arroyo ◽  
J. Á. Hernández ◽  
A. Paz-Silva ◽  
R. Sánchez-Andrade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document