Evaluation of precipitation and actual evaporation products over the Nile Basin

Author(s):  
Oscar M. Baez-Villanueva ◽  
Ian McNamara ◽  
Mauricio Zambrano-Bigiarini ◽  
Lars Ribbe

<p>An improved representation of the spatio-temporal patterns of climatological variables is crucial for ecological, agricultural, and hydrological applications and can improve the decision-making process. Traditionally, precipitation (P) and actual evaporation (ETa) are estimated using ground-based measurements from meteorological stations. However, the estimation of spatial patterns derived solely from point-based measurements is subject to large uncertainties, particularly in data-scarce regions as the Nile Basin, which has an area of about 3 million km<sup>2</sup>. This study evaluates six state-of-the-art P products (CHIRPSv2, CMORPHv1, CRU TS4.02, MSWEPv2.2, PERSIANN-CDR and GPCCv2018) and five ETa products (SSEBop, MOD16-ET, WaPOR, GLEAM and GLDAS) over the Nile Basin to identify the best-performing products. The P products were evaluated at monthly and annual temporal scales (from 1983 onwards) through a point-to-pixel approach using the modified Kling-Gupta Efficiency and its components (linear correlation, bias, and variability ratio) as continuous performance indices. The ETa products were evaluated through the water balance approach (due to the lack of ground-based ETa measurements) for 2009-2018 at the multiannual scale. Because streamflow data were not available for this period, an empirical model based on the Random Forest machine learning technique was used to estimate streamflow at 21 catchments at the monthly scale. For this purpose, we used streamflow data from 1983 to 2005 as the dependent variable, while CHIRPSv2 precipitation and ERA5 potential evaporation and temperature data were used as predictors. For the catchments where the model performed well over the validation period, streamflow estimates were generated and used for the water balance analysis. Our results show that CHIRPSv2 was the best performing P product at monthly and annual scale when compared with ground-based measurements, while WaPOR was the best-performing ETa product in the water balance evaluation. This study demonstrates how remote sensing data can be evaluated over extremely data-scarce scenarios to estimate the magnitude of key meteorological variables, yet also highlights the importance of improving data availability so that the characterisation of these variables can be further evaluated and improved.</p>

2021 ◽  
Author(s):  
Giulia Bruno ◽  
Francesco Avanzi ◽  
Simone Gabellani ◽  
Luca Ferraris ◽  
Edoardo Cremonese ◽  
...  

<p>Understanding how deficit of precipitation impacts the hydrological cycle is of growing interest and is essential for water resource management. It has been recently observed that the relationship between precipitation and runoff during droughts is subjected to a shift in the sense that the predicted runoff is much less than the one expected due to the deficit in precipitation. Unraveling why this occurs requires an accurate knowledge of all the components of the water balance equation. However, large-scale and consistent samples of precipitation, runoff, evapotranspiration, ET and change in storage have always been challenging to collect. Here, we hypothesized that blending ground-based and remote-sensing data products could fill this gap. We present a countrywide dataset of catchment-scale water balance, covering the last 10 water years in Italy. Italy shows a broad variety of climatic and topographic features and faced several droughts over recent years. We use ground-based daily runoff data, interpolated precipitation maps, and a remote-sensed daily evapotranspiration dataset from the LSASAF ET product. The ET dataset is additionally compared with flux towers data across the country, obtaining root mean square errors on the order of 30 mm/month. Lastly, changes in storage are estimated to close the water balance. More than 100 catchments - including the major Italian basins - are selected, according to data availability and reliability. These catchments cover a wide range of size, morphologic and climatic characteristics. </p><p>This dataset is a strategic source of information to analyze catchment-scale runoff, ET and storage response to climatic variability across climates and landscapes.</p>


Hydrology ◽  
2017 ◽  
Vol 4 (3) ◽  
pp. 40 ◽  
Author(s):  
Moussa Ibrahim ◽  
Dominik Wisser ◽  
Abdou Ali ◽  
Bernd Diekkrüger ◽  
Ousmane Seidou ◽  
...  

2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Baina Afkril

<p>Area studi terletak di bagian tenggara Dataran Tinggi Blackwood, Australia Barat mencakup 71 km<sup>2</sup>. Akifer Yarragadee di daerah studi utamanya tersusun oleh batu pasir yang mengandung lapisan-lapisan batu lempung dan liat. Akifer ini merupakan akifer tak-tertekan karena muncul dipermukaan sepanjang alur Sungai Blackwood pada daerah hilir di Nannup dan merupakan sumber airtanah yang keluar ke sungai. Sungai Blackwood mengalir melintasi Dataran Tinggi Blackwood. Selama musim kering, aliran permukaan ke dalam Sungai Blackwood dapat diabaikan, namun aliran dasar dari airtanah menjadi sumber utama bagi aliran sungai. Neraca air pada daerah studi dilakukan dengan menggunakan analisa jaring-aliran dan kesetimbangan air guna mengevaluasi masukan airtanah dari akifer Yarragadee ke dalam Sungai Blackwood. Mayoritas sel-sel jaring-aliran adalah sel-sel keluaran dan kebanyakan aliran airtanah masuk ke dalam Sungai Blackwood di daerah studi. Curah hujan rata-rata tahunan area studi sekitar 6.7 x 10<sup>7</sup> m<sup>3</sup> a<sup>-1</sup>. Sekitar 9 % dari total curah hujan rata-rata tahunan ini masuk ke dalam tanah sebagai sumber bagi air tanah dan 91 % hilang melalui proses evapotranspirasi. Volume total airtanah yang masuk ke dalam Sungai Blackwood antara stasiun Darradup dan Layman Flat yang dihitung menggunakan analisis jarring-aliran dan kesetimbangan air sekitar 8.1 GL a<sup>-1</sup>.  </p>


2021 ◽  
Vol 13 (12) ◽  
pp. 2333
Author(s):  
Lilu Zhu ◽  
Xiaolu Su ◽  
Yanfeng Hu ◽  
Xianqing Tai ◽  
Kun Fu

It is extremely important to extract valuable information and achieve efficient integration of remote sensing data. The multi-source and heterogeneous nature of remote sensing data leads to the increasing complexity of these relationships, and means that the processing mode based on data ontology cannot meet requirements any more. On the other hand, the multi-dimensional features of remote sensing data bring more difficulties in data query and analysis, especially for datasets with a lot of noise. Therefore, data quality has become the bottleneck of data value discovery, and a single batch query is not enough to support the optimal combination of global data resources. In this paper, we propose a spatio-temporal local association query algorithm for remote sensing data (STLAQ). Firstly, we design a spatio-temporal data model and a bottom-up spatio-temporal correlation network. Then, we use the method of partition-based clustering and the method of spectral clustering to measure the correlation between spatio-temporal correlation networks. Finally, we construct a spatio-temporal index to provide joint query capabilities. We carry out local association query efficiency experiments to verify the feasibility of STLAQ on multi-scale datasets. The results show that the STLAQ weakens the barriers between remote sensing data, and improves their application value effectively.


2021 ◽  
Vol 36 ◽  
pp. 100837
Author(s):  
Mou Leong Tan ◽  
Yi Lin Tew ◽  
Kwok Pan Chun ◽  
Narimah Samat ◽  
Shazlyn Milleana Shaharudin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document