The sea-level signal in Pleistocene shallow-marine records – examples from carbonate and siliciclastic sequences

Author(s):  
Barbara Mauz ◽  
Zhixiong Shen ◽  
Natasha Barlow ◽  
David Hodgson ◽  
Colin Woodroffe

<p>It is generally accepted that sea-level change represents the most important boundary condition that controls stratigraphic architecture in the shallow-marine area and further downdip. The shallow-marine stratigraphic body is then a result of the changing ratio between sediment supply and accommodation space with a range of local (autogenic) processes interplaying with the eustatic (allogenic) sea level. Extracting the sea-level signal from this interplay is typically approached through rigorous interpretation of the indicative meaning of relevant sea-level markers and through comparison with the most appropriate glacio-isostatic adjustment (GIA) model. The latter comparison is insightful for the last glacial period, but for the Pleistocene it suffers from the dilemma that the GIA contribution to sea-level change cannot be predicted for a specific location unless the ice history is known but this is what the shallow-marine record is trying to reconstruct.</p><p>Here we aim for Pleistocene sea-level reconstructions that are largely independent of GIA predictions. For this we present Pleistocene shallow-marine records from high-, mid- and low-latitudinal settings. The presentation focuses on four aspects: type and quality of the data (e.g. outcrop, borehole, etc), preservation of the record, separation of allogenic versus autogenic signal and completeness of the eustatic cycle.</p><p>We show that in siliciclastic systems the preservation depends on sediment supply and on the coastal energy with which ravinement and regression surfaces obliterate the stratigraphic record. Separating autogenic from allogenic signals depends very much on data quality and the ability to reconstruct the antecedent topography. None of our records show a complete eustatic cycle from lowstand to highstand and back to lowstand where the missing part of the cycle seems to be indicative for the type of shallow-marine record and its location on earth.</p><p>We discuss reasons and implications of our findings and emphasise the need for far greater consideration of stratigraphic architecture, carbonate facies and facies correlation.</p>

2014 ◽  
Vol 27 (23) ◽  
pp. 8740-8746 ◽  
Author(s):  
Florence Chen ◽  
Sarah Friedman ◽  
Charles G. Gertler ◽  
James Looney ◽  
Nizhoni O’Connell ◽  
...  

Abstract Peak eustatic sea level (ESL), or minimum ice volume, during the protracted marine isotope stage 11 (MIS11) interglacial at ~420 ka remains a matter of contention. A recent study of high-stand markers of MIS11 age from the tectonically stable southern coast of South Africa estimated a peak ESL of 13 m. The present study refines this estimate by taking into account both the uncertainty in the correction for glacial isostatic adjustment (GIA) and the geographic variability of sea level change following polar ice sheet collapse. In regard to the latter, the authors demonstrate, using gravitationally self-consistent numerical predictions of postglacial sea level change, that rapid melting from any of the three major polar ice sheets (West Antarctic, Greenland, or East Antarctic) will lead to a local sea level rise in southern South Africa that is 15%–20% higher than the eustatic sea level rise associated with the ice sheet collapse. Taking this amplification and a range of possible GIA corrections into account and assuming that the tectonic correction applied in the earlier study is correct, the authors revise downward the estimate of peak ESL during MIS11 to 8–11.5 m.


2008 ◽  
Vol 23 (5) ◽  
pp. 415-433 ◽  
Author(s):  
Anthony C. Massey ◽  
W. Roland Gehrels ◽  
Dan J. Charman ◽  
Glenn A. Milne ◽  
W. Richard Peltier ◽  
...  

2019 ◽  
Author(s):  
Philippos Garefalakis ◽  
Fritz Schlunegger

Abstract. The stratigraphic architecture of the Swiss Molasse basin reveals crucial information about the basin’s geometry, its evolution and the processes leading to the deposition of the clastic material. Nevertheless, the formation of the Upper Marine Molasse (OMM) and the controls on the related Burdigalian transgression are not fully understood yet. During these times, from c. 20 to 17 Ma, the Swiss Molasse basin was partly flooded by a peripheral shallow marine sea, striking SW – NE. We proceeded through detailed sedimentological and stratigraphic examinations of several sites across the entire Swiss Molasse basin in order to deconvolve the stratigraphic signals related surface and tectonic controls. Surface-related signals include stratigraphic responses to changes in eustatic sea level and sediment fluxes, while the focus on crustal-scale processes lies on the uplift of the Aar-massif at c. 20 Ma. Field examinations show, that the evolution of the Burdigalian seaway was characterized by (i) shifts in the depositional settings, (ii) changes in discharge directions, a deepening and widening of the basin, and (iv) phases of erosion and non-deposition. We relate these changes in the stratigraphic records to a combination of surface and tectonic controls at various scales. In particular, roll-back subduction of the European mantle lithosphere, delamination of crustal material and the associated rise of the Aar-massif most likely explain the widening of the basin particular at distal sites. In addition, the uplift of the Aar-massif was likely to have shifted the patterns of surface loads. These mechanisms could have caused a flexural adjustment of the foreland plate underneath the Molasse basin, which we use as mechanism to explain the establishment of distinct depositional environments and particularly the formation of subtidal-shoals where a lateral bulge is expected. In the Alpine hinterland, these processes occurred simultaneously with a period of fast tectonic exhumation accomplished through slip along the Simplon detachment fault, with the consequence that sediment flux to the basin decreased. It is possible that this reduction in sediment supply contributed to the establishment of marine conditions in the Swiss Molasse basin and thus amplified the effect related to the tectonically controlled widening of the basin. Because of the formation of shallow marine conditions, subtle changes in the eustatic sea level contributed to the occurrence several hiatus that chronicle periods of erosion and non-sedimentation. While these mechanisms are capable of explaining the establishment of the Burdigalian seaway and the formation of distinct sedimentological niches in the Swiss Molasse basin, the drainage reversal during OMM-times possibly requires a change in the tectonic processes at the slab scale. We conclude that sedimentological records can be used to decipher surface controls and lithospheric-scale processes in orogens from the stratigraphic record, provided that a detailed sedimentological and chronological database is available.


2013 ◽  
Vol 24 (4-1) ◽  
pp. 471 ◽  
Author(s):  
Zhenwei Huang ◽  
Jun-Yi Guo ◽  
C. K. Shum ◽  
Junkun Wan ◽  
Jianbin Duan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document