aar massif
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 3)

Author(s):  
L. Nibourel ◽  
M. Rahn ◽  
I. Dunkl ◽  
A. Berger ◽  
F. Herman ◽  
...  
Keyword(s):  

2021 ◽  
Vol 114 (1) ◽  
Author(s):  
Lukas Nibourel ◽  
Alfons Berger ◽  
Daniel Egli ◽  
Stefan Heuberger ◽  
Marco Herwegh

AbstractThe thermo-kinematic evolution of the eastern Aar Massif, Swiss Alps, was investigated using peak temperature data estimated from Raman spectroscopy of carbonaceous material and detailed field analyses. New and compiled temperature-time constraints along the deformed and exhumed basement-cover contact allow us to (i) establish the timing of metamorphism and deformation, (ii) track long-term horizontal and vertical orogenic movements and (iii) assess the influence of temperature and structural inheritance on the kinematic evolution. We present a new shear zone map, structural cross sections and a step-wise retrodeformation. From $$\text{ca.\;26\,Ma}$$ ca.\;26\,Ma onwards, basement-involved deformation started with the formation of relatively discrete NNW-directed thrusts. Peak metamorphic isograds are weakly deformed by these thrusts, suggesting that they initiated before or during the metamorphic peak under ongoing burial in the footwall to the basal Helvetic roof thrust. Subsequent peak- to post-metamorphic deformation was dominated by steep, mostly NNW-vergent reverse faults ($$\text{ca.}$$ ca.  22–14 Ma). Field investigations demonstrate that these shear zones were steeper than $$50^{\circ}$$ 50 ∘ already at inception. This produced the massif-internal structural relief and was associated with large vertical displacements (7 km shortening vs. up to 11 km exhumation). From 14 Ma onwards, the eastern Aar massif exhumed “en bloc” (i.e., without significant differential massif-internal exhumation) in the hanging wall of frontal thrusts, which is consistent with the transition to strike-slip dominated deformation observed within the massif. Our results indicate 13 km shortening and 9 km exhumation between 14 Ma and present. Inherited normal faults were not significantly reactivated. Instead, new thrusts/reverse faults developed in the basement below syn-rift basins, and can be traced into overturned fold limbs in the overlying sediment, producing tight synclines and broad anticlines along the basement-cover contact. The sediments were not detached from their crystalline substratum and formed disharmonic folds. Our results highlight decreasing rheological contrasts between (i) relatively strong basement and (ii) relatively weak cover units and inherited faults at higher temperature conditions. Both the timing of basement-involved deformation and the structural style (shear zone dip) appear to be controlled by evolving temperature conditions.


2021 ◽  
Author(s):  
Ferdinando Musso Piantelli ◽  
David Mair ◽  
Marco Herwegh ◽  
Alfons Berger ◽  
Eva Kurmann ◽  
...  

<p>Inversion of passive margins and their transportation into fold-and-thrust belts is a critical stage of mountain building processes and their structural interpretation is fundamental for understanding collisional orogens. Due to the multitude of parameters that influence their formation (e.g. the interaction between sedimentary cover and basement, the mechanical stratigraphy or the rheology of different rock types) as well as along-strike internal variations, a single cross-sectional view is insufficient in exploring the 3D evolution of a fold-and-thrust belt. Hence, a 3D geological characterization is required to better comprehend such complex systems. Based on a detailed digital map, a 3D structural model of the current tectonic situation and sequential retrodeformation, we elaborate the 3D evolution of a part of the former European passive continental margin. In this setting, we focus on the Doldenhorn Nappe (DN) and the underlying western Aar massif (external Central Alps, Switzerland). The DN is part of the Helvetic nappe system and consists of a large-scale recumbent fold with a thin inverted limb of intensively deformed sediments (Herwegh and Pfiffner 2005). The sedimentary rocks of the DN were deposited in Mesozoic-Cenozoic times in a small-sized basin, which has been inverted during the compression of the Alpine orogeny (Burkhard 1988). Along NNW-SSE striking geological cross-sections, restoration techniques reveal the original asymmetric triangular shape of the DN basin and how the basin has been exhumed from ~ -12 km (Berger et al. 2020) to its present position at 4km elevation above sea level throughout several Alpine deformation stages. Moreover, the model allows to visualize the current structural position of the DN and the massif as well as the geometric and overprinting relationships of the articulated deformation sequence that shaped the investigated area throughout the Alpine evolution. Here we document that: (i) the DN is a strongly non-cylindrical recumbent fold that progressively pinches out toward the NE; (ii) significant along-strike (W-E) stratigraphy thickness variations are reflected in structural variations from a single basal thrust deformation (W) to an in-sequence thrust deformation (E); and (iii) the progressive exhumation of the basement units towards the E and thrusting towards the N. In this context, special emphasis is given to illustrate how three-dimensional geometry of inherited pre-orogenic structures (e.g., Variscan-Permian and rifting related basement cover structures) play a key role in the structural style of fold-and-thrust belts. In summary, today’s structural position of the DN is the result of the inversion of a small basin in an early stage of thrusting, which was followed by sub-vertical buoyancy driven exhumation of the Aar massif and subsequent thrust related shortening. All three stages are deeply coupled with an original non-cylindrical shape of the former European passive continental margin.</p>


2021 ◽  
Vol 114 (1) ◽  
Author(s):  
Tobias Diehl ◽  
John Clinton ◽  
Carlo Cauzzi ◽  
Toni Kraft ◽  
Philipp Kästli ◽  
...  

AbstractThis report summarizes the seismicity in Switzerland and surrounding regions in the years 2017 and 2018. In 2017 and 2018, the Swiss Seismological Service detected and located 1227 and 955 earthquakes in the region under consideration, respectively. The strongest event in the analysed period was the ML 4.6 Urnerboden earthquake, which occurred in the border region of cantons Uri, Glarus and Schwyz on March 6, 2017. The event was the strongest earthquake within Switzerland since the ML 5.0 Vaz earthquake of 1991. Associated ground motions indicating intensity IV were reported in a radius up to about 50 km and locally approached intensity VI in the region close to the epicentre. Derived focal mechanisms and relative hypocentre relocations of the immediate aftershocks image a NNW–SSE striking sinistral strike-slip fault. Together with other past events in this region, the Urnerboden earthquake suggests the existence of a system of sub-parallel strike-slip faults, likely within in the uppermost crystalline basement of the eastern Aar Massif. A vigorous earthquake sequence occurred close to Château-d'Oex in the Préalpes-Romandes region in western Switzerland. With a magnitude of ML 4.3, the strongest earthquake of the sequence occurred on July 1, 2017. Focal mechanism and relative relocations of fore- and aftershocks image a NNE dipping normal fault in about 4 km depth. Two similarly oriented shallow normal-fault events occurred between subalpine Molasse and Préalpes units close to Châtel-St-Denis and St. Silvester in 2017/18. Together, these events indicate a domain of NE–SW oriented extensional to transtensional deformation along the Alpine Front between Lake Geneva in the west and the Fribourg Fault in the east. The structural complexity of the Fribourg Fault is revealed by an ML 2.9 earthquake near Tafers in 2018. The event images a NW–SE striking fault segment within the crystalline basement, which might be related to the Fribourg Fault Zone. Finally, the ML 2.8 Grenchen earthquake of 2017 provides a rare example of shallow thrust faulting along the Jura fold-and-thrust belt, indicating contraction in the northwestern Alpine foreland of Switzerland.


2020 ◽  
Author(s):  
Tobias Diehl ◽  
Edi Kissling ◽  
Timothy Lee ◽  
Stefan Schmid ◽  
Marco Herwegh

<p>The present-day deformation in the Central Alps is dominated by vertical uplift, at rates up to 1.5 mm/yr as indicated by high-precision levelling and GPS data. Understanding the driving mechanisms of this neotectonic uplift and its link to seismicity in the Central Alps requires accurate locations of current deformation processes within the upper crust. Especially the question if and how deformation in the crystalline basement is coupled with deformation in the overlaying nappe systems is key to understand the neotectonic processes. Seismicity provides important information on deformation in the uppermost crust, however, an accuracy of focal depths in the order of few kilometers and less is required to distinguish sources in the basement from sources in the sedimentary cover.</p><p>In this study, we demonstrate how insufficient crustal velocity models and inconsistent seismic phase selection can lead to biased hypocenter solutions, which hamper such high-resolution seismotectonic interpretations. We propose a relocation procedure combining a new high-resolution Pg and Sg 3D crustal model of the Central Alps with a dynamic seismic phase selection to overcome this bias and to improve accuracy of hypocenter solutions. The new tomographic model is based on more than 60,000 Pg and 30,000 quality-checked Sg phases of earthquakes, which occurred in the greater Central Alpine region between 1996 and 2019. In combination with a nonlinear, probabilistic earthquake location algorithm, the model was used to relocate more than 18’000 earthquakes, which occurred in this region over the past 36 years. The derived catalog includes a consistent error and quality assessment, calibrated against ground-truth events like quarry blasts.</p><p>The relocated seismicity in the Central Alps is interpreted together with additional information from the tomographic model, focal mechanisms, geophysical, geological and geodetic data. We focus our interpretation on the eastern Aar massif as well as on the Rawil depression, located in-between the outcropping Aar and Aiguilles-Rouge massifs. Both regions were recently affected by remarkable seismic events. The ML4.6 Urnerboden earthquake of 2017 occurred near the eastern termination of the Aar massif, while a sequence of about 350 events occurred in the Rawil earthquake lineament near the Sanetschpass in November 2019. Both sequences provide unique insights into active faults in the Central Alps and we image systems of sub-vertically oriented strike-slip faults of variable strike, which root in the crystalline basement in both regions. Our results document the existence of active strike-slip fault systems in the External Crystalline Massifs of the Central Alps in regions of maximum change in uplift rates. We therefore discuss possible models relating the observed strike-slip kinematics to buoyancy-driven vertical tectonic processes.</p>


2020 ◽  
Author(s):  
Veronica Peverelli ◽  
Alfons Berger ◽  
Thomas Pettke ◽  
Holger Stunitz ◽  
Pierre Lanari ◽  
...  

<p>The widespread presence of epidote-bearing veins and hydrous minerals such as micas in meta-granitoid rocks attests to the large extent of hydration of the exhuming continental crust. The ability of epidote (Ca<sub>2</sub>Al<sub>3</sub>Si<sub>3</sub>O<sub>12</sub>(OH) – Ca<sub>2</sub>Al<sub>2</sub>Fe<sup>3+</sup>Si<sub>3</sub>O<sub>12</sub>(OH)) to incorporate a wide variety of trace elements renders this mineral a promising geochemical tracer of circulating fluid(s).</p><p>We report trace element and microstructural data on epidote-bearing veins from the Aar Massif (Central Alps) and from the Albula Pass (Eastern Alps). We characterized and classified the epidote-bearing veins based on their extent of deformation, shape and size of the epidote grains, coexisting minerals, and degree of dynamic recrystallization of associated quartz. Laser ablation ICP-MS data of individual epidote crystals reveal prominent zoning, confirmed by electron probe maps for Sr and Mn. Overall, low to very low Th/U ratios (down to 0.0005 in the Aar Massif veins and 0.001 in the Albula ones) with Th often below limits of detection (< 0.1 µg/g at 16 µm beam size) go along with variably LREE-depleted patterns (and CI Chondrite-normalized La<sub>N</sub>/Yb<sub>N</sub> ~0.35 in the Aar Massif veins and ~0.60 in the Albula Pass veins). Strontium contents are variable (hundreds to thousands of µg/g) and mostly high (up to 10100 µg/g in the Aar Massif samples and 12800 µg/g in the Albula Pass samples). The in-situ geochemical data are linked to the microstructures in order to assess whether microstructures can be related to variations in trace elements, also considering the role of coexisting phases. Moreover, trace element data of samples from the Aar Massif are compared to metamorphic host-rock epidotes and cleft epidotes from the same massif.</p><p>We find that REE patterns of Aar Massif vein epidotes are clearly different than those of metamorphic host-rock epidotes and of cleft epidotes. In addition, REE patterns vary based on the microstructural characteristics of veins. Overall REE patterns of the Albula Pass vein epidotes resemble those from the Aar Massif. Different veins and microstructures define clusters in Sr vs. Y, Eu anomaly vs. Th/U ratios, and Eu anomaly vs. U values. Geochemical heterogeneities are observed among sampling localities within the Aar Massif.</p><p>The fact that the geochemical characteristics of retrograde hydrothermal vein epidotes are clearly different than those of high-grade metamorphic and metamorphic host-rock epidotes, and the relationship between geochemical characteristics and microstructures support the hypothesis that the deformation did not alter the original geochemical record through neomineralization. Our data argue for the potential of epidote as a powerful fluid tracer in the granitoid continental crust.</p>


2020 ◽  
Author(s):  
Ferdinando Musso Piantelli ◽  
Marco Herwegh ◽  
Alfons Berger ◽  
Michael Wiederkehr ◽  
Eva Kurmann ◽  
...  

<p>3D modelling of complex and irregular geological bodies is an expanding discipline that combines two-dimensional cartographic and structural data managed with GIS technology. This study presents a complete workflow developed to process geological information to build a 3D model of major stratigraphic, structural and tectonic boundaries. The investigated area is located in the western part of the Aar Massif (external Central Alps, Switzerland) characterized by pronounced topographic (600–<4000 m) relief, making it prone for surface based 3D depth constructions. The workflow comprises four major steps:</p><p>(1)  <strong>Generation of 2D polylines in a map view</strong>: a two-dimensional dataset of sequences of polylines has been generated in ArcGIS (10.3.1) defining the starting dataset for the major stratigraphic and tectonic boundaries of the bedrock units. This dataset has been compiled and integrated by using: (i) GeoCover vector datasets 1:25 000 of the Swiss Geological Survey; (ii) The Geological Special Map 1:100 000 of the Aar Massif and the Tavetsch and Gotthard Nappes of the Swiss Geological Survey; (iii) data from literature; and (iv) additional field work conducted for this study in key-locations.</p><p>(2) <strong>Projection of 2D information onto 3D digital elevation model</strong>: with the 3D structural modelling software Move (Petex/Midland Valley; 2019.1) the boundaries have then been projected on a digital elevation model (swissALTI3D) with 2 m resolution.</p><p>(3) <strong>Construction of tectonic cross sections</strong>: the use of geometric arguments as well as structural measurements allows for projection of these boundaries into a dense regularly spaced network of 2D cross-sections.</p><p>(4) <strong>Interpolation of 3D surfaces</strong>: the surface and cross-sections boundaries can be interpolated by applying 3D projection and meshing techniques resulting in a final 3D structural model.</p><p>Generally, steps (2–4) require iterative adaptations particularly in the case of surface areas being covered by glaciers or unconsolidated Quaternary sediments. In the model, special emphasis is given to visualize the current structural disposition of the western Aar Massif as well as the relative geometric and overprinting relationships of the deformation sequence that shaped the investigated area throughout the Alpine deformation. Finally, since in the investigated area underground data are scarce, an assessment of the relative uncertainties related to input data and is intended to be performed following the approach proposed by Baumberger (2014) and Ferńandez (2005). The workflow presented here offers the chance to gain validation approaches for domains only weakly constrained or with no surface data available, by generating a 3D model that integrates all accessible geological information and background knowledge.</p><p> </p><p>REFERENCES</p><p>Baumberger, R. (2014): Quantification of Lineaments: Link between internal 3D structure and surface evolution 328 of the Hasli valley (Aar massif, central alps, Switzerland), University of Bern, PhD Thesis, unpublished.</p><p>Ferńandez, O. (2005): Obtaining a best fitting plane through 3D georeferenced data, Journal of Structural Geology 27, pp. 855–858</p>


2020 ◽  
Vol 200 ◽  
pp. 102959 ◽  
Author(s):  
M. Herwegh ◽  
A. Berger ◽  
C. Glotzbach ◽  
C. Wangenheim ◽  
S. Mock ◽  
...  

Solid Earth ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 2045-2072 ◽  
Author(s):  
Philippos Garefalakis ◽  
Fritz Schlunegger

Abstract. The stratigraphic architecture of the Swiss Molasse basin, situated on the northern side of the evolving Alps, reveals crucial information about the basin's geometry, its evolution, and the processes leading to the deposition of the siliciclastic sediments. Nevertheless, the formation of the Upper Marine Molasse (OMM) and the controls on the related Burdigalian transgression have still been a matter of scientific debate. During the time period from ca. 20 to 17 Ma, the Swiss Molasse basin was partly flooded by a shallow marine sea striking SW–NE. Previous studies have proposed that the transgression occurred in response to a rise in global sea level, a reduction of sediment flux, or an increase in tectonically controlled accommodation space. Here, we readdress this problem and extract stratigraphic signals from the Burdigalian molasse deposits that can be related to changes in sediment supply rate, variations in the eustatic sea level, and subduction tectonics. To achieve this goal, we conducted sedimentological and stratigraphic analyses of several sites across the entire Swiss Molasse basin. Field investigations show that the transgression and the subsequent evolution of the Burdigalian seaway was characterized by (i) a deepening and widening of the basin, (ii) phases of erosion and non-deposition during Lower Freshwater Molasse (USM), OMM, and Upper Freshwater Molasse (OSM) times, and (iii) changes in along-strike drainage reversals. We use these changes in the stratigraphic record to disentangle tectonic and surface controls on the facies evolution at various scales. As the most important mechanism, rollback subduction of the European mantle lithosphere most likely caused a further downwarping of the foreland plate, which we use to explain the deepening and widening of the Molasse basin, particularly at distal sites. In addition, subduction tectonics also caused the uplift of the Aar massif. This process was likely to have shifted the patterns of surface loads, thereby resulting in a buckling of the foreland plate and influencing the water depths in the basin. We use this mechanism to explain the establishment of distinct depositional settings, particularly the formation of subtidal shoals wherein a bulge in relation to this buckling is expected. The rise of the Aar massif also resulted in a reorganization of the drainage network in the Alpine hinterland, with the consequence that the sediment flux to the basin decreased. We consider this reduction in sediment supply to have amplified the tectonically controlled deepening of the Molasse basin. Because the marine conditions were generally very shallow, subtle changes in eustatic sea level contributed to the formation of several hiatuses that chronicle periods of erosion and non-sedimentation. These processes also amplified the tectonically induced increase in accommodation space during times of global sea level highstands. Whereas these mechanisms are capable of explaining the establishment of the Burdigalian seaway and the formation of distinct sedimentological niches in the Swiss Molasse basin, the drainage reversal during OMM times possibly requires a change in tectonic processes at the slab scale, most likely including the entire Alpine range between the Eastern and Central Alps. In conclusion, we consider rollback tectonics to be the main driving force controlling the transgression of the OMM in Switzerland, with contributions by the uplift of individual crustal blocks (here the Aar massif) and by a reduction of sediment supply. This reduction of sediment flux was likely to have been controlled by tectonic processes as well when basement blocks became uplifted, thereby modifying the catchment geometries. Eustatic changes in sea level explain the various hiatuses and amplified the deepening of the basin during eustatic highstand conditions.


Sign in / Sign up

Export Citation Format

Share Document