Point markers in replacement of odometer driven positioning: effects and possible problems

Author(s):  
Raffaele Persico

<p>It is widely known that, in GPR prospecting [1-2], sometime it is not possible to make use of the customary odometer for the recording of the position of the measurement points along the observation line. Consequently, in these cases the human operator is compelled to make use of point markers placed at known positions (measured with a tape) along the observation line. In particular, this can happen on the sand of a desert and on the polar ice [3], but it might happen also just due to some ill-functioning of the odometer. Notwithstanding, quite rarely the effects of the use of the point markers have been examined on the basis of some experimental test. At the conference, we will show an experiment where the same observation line has been gone through several times, first making use of the odometer included in the exploited GPR system and then making use of marker points. A third time, the same path was still travelled without odometers and taking the marker points without making use of any laptop command. These were replaced just by stopping for some seconds the GPR in any marker point (but keeping it switched on). This option can be useful in cases where e.g. the command has to be given through a touchscreen. The observation line was 15 m long, and was placed on a flat smooth and tough floor. This means that the line offered favourable conditions for the use of the odometer, and so the positions of the anomalies identified making use of the odometer are considered as the correct positions of the buried targets. This has allowed a quantification of the displacements from the correct position of the buried anomalies when making use of marker points taken with a step of one meter from each other. A  larger and deeper dealing is available in [4].</p><p><strong>References</strong></p><p>[1] R. Pierri, G. Leone, F. Soldovieri, R. Persico, "Electromagnetic inversion for subsurface applications under the distorted Born approximation" Nuovo Cimento, vol. 24C, N. 2, pp 245-261, March-April 2001.</p><p>[2] R. Persico, M. Ciminale, L. Matera, A new reconfigurable stepped frequency GPR system, possibilities and issues; applications to two different Cultural Heritage Resources, Near Surface Geophysics, vol. 12, n. 6, pp. 793-801 (doi: 10.3997/1873-0604.2014035), December 2014.</p><p>[3] H. Jol, Ground Penetrating Radar: Theory and applications, Elsevier, 2009.</p><p>[4] R. Persico, <strong>Ground Penetrating Radar: Physics and Practical Aspects, </strong>Springer Handbook of Cultural Heritage Analysis, edited by Sebastiano D’Amico and Valentina Venuti, Springer, 2020.</p>

2020 ◽  
Author(s):  
Salvatore Piro ◽  
Bruna Malandruccolo

<p>The Monte Abatone Necorpolis is one of the main important necropolis of Cerveteri, located 60 km north of Rome (Latium, Italy). In this area, several tombs have been discovered and excavated from the 1800, though still many remain hidden underneath the subsurface.</p><p>In the last two years, geophysical surveys have been carried out to investigate the unexplored portions of the ancient Etruscan Necropolis, to provide a complete mapping of the position of the tombs. Ground Penetrating Radar and the Magnetometric methods have been used during 2018 to investigate few parts of the Necropolis. During 2019 (July and September) GPR system SIR 3000 (GSSI), equipped with a 400 MHz antenna with constant offset, SIR4000 (GSSI) equipped with a dual frequency antenna with 300/800 MHz and the 3D Radar Geoscope multichannel stepped frequency system were employed to survey 5 hectares where the presence of tombs was hypothesized from previous archaeological studies.</p><p>All the GPR profiles were processed with GPR-SLICE v7.0 Ground Penetrating Radar Imaging Software (Goodman 2017). The basic radargram signal processing steps included: post processing pulse regaining; DC drift removal; data resampling; band pass filtering; background filter and migration. With the aim of obtaining a planimetric vision of all possible anomalous bodies, the time-slice representation technique was applied using all processed profiles showing anomalous sources up to a depth of about 2.5 m.</p><p>The preliminary obtained results clearly show the presence of a network of strong circular features, linked with the buried structural elements of the searched tombs.</p><p>Together with archaeologists, these anomalies, have been interpreted to have a better understanding of the archaeological definition of these features and to enhance the knowledge of the necropolis layout and mapping; after the geophysical surveys, excavations have been conducted, which brought to light few of the investigated structures.</p><p> </p><p><strong>References</strong></p><p>Campana S., Piro S., 2009. Seeing the Unseen. Geophysics and Landscape Archaeology. Campana & Piro Editors. CRC Press, Taylor & Francis Group. Oxon UK, ISBN 978-0-415-44721-8.</p><p>Goodman, D., Piro, S., 2013. GPR Remote sensing in Archaeology, Springer: Berlin.</p><p>Piro S., Papale E., Zamuner D., Kuculdemirci M., 2018. Multimethodological approach to investigate urban and suburban archaeological sites. In “Innovation in Near Surface Geophysics. Instrumentation, application and data processing methods.”, Persico R., Piro S., Linford N., Ed.s. pp. 461 – 504, ISBN: 978-0-12-812429-1, pp.1-505, Elsevier.</p>


2021 ◽  
pp. 1-53
Author(s):  
Lei Fu ◽  
Lanbo Liu

Ground-penetrating radar (GPR) is a geophysical technique widely used in near-surface non-invasive detecting. It has the ability to obtaining a high-resolution internal structure of living trunks. Full wave inversion (FWI) has been widely used to reconstruct the dielectric constant and conductivity distribution for cross-well application. However, in some cases, the amplitude information is not reliable due to the antenna coupling, radiation pattern and other effects. We present a multiscale phase inversion (MPI) method, which largely matches the phase information by normalizing the magnitude spectrum; in addition, a natural multiscale approach by integrating the input data with different times is implemented to partly mitigate the local minimal problem. Two synthetic GPR datasets generated from a healthy oak tree trunk and from a decayed trunk are tested by MPI and FWI. Field GPR dataset consisting of 30 common shot GPR data are acquired on a standing white oak tree (Quercus alba); the MPI and FWI methods are used to reconstruct the dielectric constant distribution of the tree cross-section. Results indicate that MPI has more tolerance to the starting model, noise level and source wavelet. It can provide a more accurate image of the dielectric constant distribution compared to the conventional FWI.


Sign in / Sign up

Export Citation Format

Share Document