Land subsidence prediction with uncertainty analysis by a smoother algorithm with a multiple calibration-constrained null-space Monte Carlo method

Author(s):  
Masaatsu Aichi

<p>Predicting the future land subsidence caused by groundwater abstraction is necessary for the planning and decision-making of groundwater usage in coastal area. Although numerical modeling is expected to quantitatively predict land subsidence, a single calibrated model cannot provide a reliable prediction because of the uncertainty on properties and conditions in the subsurface. In addition, applying ensemble Kalman filter or ensemble smoother to land subsidence modeling is not straightforward because of the highly nonlinear and hysteric characteristics in clay compaction process.</p><p>This study developed a smoother algorithm with a multiple calibration-constrained null-space Monte Carlo method for a numerical simulator of groundwater mass balance with modified Cam-clay model. The developed algorithm calibrates a model ensemble using a newly obtained observed value in each observation step. Based on the calibration-constrained null-space Monte Carlo method, a new model ensemble in the null-space is produced in each observation step. In this step, both the current and past state as well as parameters in the model are updated like ensemble smoother in order to follow the hysteretic behavior in the soil compaction. The produced ensemble can be used not only for prediction uncertainty analysis at that step but also as initial estimates of a multiple calibration-constrained null-space Monte Carlo method in the next observation step.</p><p>The proposed method was applied to the land subsidence modeling in the Tokyo lowland area, Japan. The proposed method could make model ensemble with satisfactory good reproducibility and show the range of uncertainty of future prediction for several scenarios of future groundwater level change.</p>

Author(s):  
Masaatsu Aichi

Abstract. This study presents an inversion scheme with uncertainty analysis for a land subsidence modelling by a Monte Carlo filter in order to contribute to the decision-making on the groundwater abstraction. For real time prediction and uncertainty analysis under the limited computational resources and available information in emergency situations, one dimensional vertical land subsidence simulation was adopted for the forward modelling and the null-space Monte Carlo method was applied for the effective resampling. The proposed scheme was tested with the existing land subsidence monitoring data in Tokyo lowland, Japan. The results demonstrated that the prediction uncertainty converges and the prediction accuracy improves as the observed data increased with time. The computational time was also confirmed to be acceptable range for a real time execution with a laptop.


2011 ◽  
Author(s):  
Taras I. Lakoba ◽  
Michael Vasilyev ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras ◽  
...  

2011 ◽  
Author(s):  
Alice Reinbacher-Köstinger ◽  
Manuel Freiberger ◽  
Hermann Scharfetter

Solar Energy ◽  
2016 ◽  
Vol 132 ◽  
pp. 558-569 ◽  
Author(s):  
Giorgio Belluardo ◽  
Grazia Barchi ◽  
Dietmar Baumgartner ◽  
Marcus Rennhofer ◽  
Philipp Weihs ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4472 ◽  
Author(s):  
Mingotti ◽  
Peretto ◽  
Tinarelli ◽  
Ghaderi

The paper addresses the evaluation of the uncertainty sources of a test bed system for calibrating voltage transformers vs. temperature. In particular, the Monte Carlo method has been applied in order to evaluate the effects of the uncertainty sources in two different conditions: by using the nominal accuracy specifications of the elements which compose the setup, or by exploiting the results of their metrological characterization. In addition, the influence of random effects on the system accuracy has been quantified and evaluated. From the results, it emerges that the choice of the uncertainty evaluation method affects the overall study. As a matter of fact, the use of a metrological characterization or of accuracy specifications provided by the manufacturers provides respectively an accuracy of 0.1 and 0.5 for the overall measurement setup.


Sign in / Sign up

Export Citation Format

Share Document