scholarly journals Land subsidence modelling for decision making on groundwater abstraction under emergency situation

Author(s):  
Masaatsu Aichi

Abstract. This study presents an inversion scheme with uncertainty analysis for a land subsidence modelling by a Monte Carlo filter in order to contribute to the decision-making on the groundwater abstraction. For real time prediction and uncertainty analysis under the limited computational resources and available information in emergency situations, one dimensional vertical land subsidence simulation was adopted for the forward modelling and the null-space Monte Carlo method was applied for the effective resampling. The proposed scheme was tested with the existing land subsidence monitoring data in Tokyo lowland, Japan. The results demonstrated that the prediction uncertainty converges and the prediction accuracy improves as the observed data increased with time. The computational time was also confirmed to be acceptable range for a real time execution with a laptop.

Author(s):  
Deidre Hahn ◽  
Jessica Block ◽  
Mark Keith ◽  
Ajay Vinze

Real time collaboration solutions are critical during a large scale emergency situation and necessitate the coordination of multiple disparate groups. Collaborative technologies may be valuable in the planning and execution of disaster preparedness and response. Yet, research suggests that specific collaborative technologies, such as group decision support systems, are not often leveraged for decision-making during real time emergency situations in the United States. In this chapter, we propose a theoretical model of the impact of disaster immediacy and collaboration systems on group processes and outcomes. Using a 3D model of the dimensions of space, time, and situation, we explore media richness and group polarization within the context of collaboration technologies and disaster situations. We also present the next generation of collaboration technology extensions in order to address the need for more contemporary decisional settings. This set of principles and theories suggest how collaborative technologies may be positioned to better manage future disasters.


2020 ◽  
Author(s):  
Masaatsu Aichi

<p>Predicting the future land subsidence caused by groundwater abstraction is necessary for the planning and decision-making of groundwater usage in coastal area. Although numerical modeling is expected to quantitatively predict land subsidence, a single calibrated model cannot provide a reliable prediction because of the uncertainty on properties and conditions in the subsurface. In addition, applying ensemble Kalman filter or ensemble smoother to land subsidence modeling is not straightforward because of the highly nonlinear and hysteric characteristics in clay compaction process.</p><p>This study developed a smoother algorithm with a multiple calibration-constrained null-space Monte Carlo method for a numerical simulator of groundwater mass balance with modified Cam-clay model. The developed algorithm calibrates a model ensemble using a newly obtained observed value in each observation step. Based on the calibration-constrained null-space Monte Carlo method, a new model ensemble in the null-space is produced in each observation step. In this step, both the current and past state as well as parameters in the model are updated like ensemble smoother in order to follow the hysteretic behavior in the soil compaction. The produced ensemble can be used not only for prediction uncertainty analysis at that step but also as initial estimates of a multiple calibration-constrained null-space Monte Carlo method in the next observation step.</p><p>The proposed method was applied to the land subsidence modeling in the Tokyo lowland area, Japan. The proposed method could make model ensemble with satisfactory good reproducibility and show the range of uncertainty of future prediction for several scenarios of future groundwater level change.</p>


2021 ◽  
pp. 1-24
Author(s):  
Chen Wei ◽  
Yuanhang Chen

Summary Improved numerical efficiency in simulating wellbore gas-influx behaviors is essential for realizing real-time model-prediction-based gas-influx management in wells equipped with managed-pressure-drilling (MPD) systems. Currently, most solution algorithms for high-fidelitymultiphase-flow models are highly time consuming and are not suitable for real-time decision making and control. In the application of model-predictive controllers (MPCs), long calculation time can lead to large overshoots and low control efficiency. This paper presents a drift-flux-model (DFM)-based gas-influx simulator with a novel numerical scheme for improved computational efficiency. The solution algorithm to a Robertson problem as differential algebraic equations (DAEs) was used as the numerical scheme to solve the control equations of the DFM in this study. The numerical stability and computational efficiency of this numerical scheme and the widely used flux-splitting methods are compared and analyzed. Results show that the Robertson DAE problem approach significantly reduces the total number of arithmetic operations and the computational time compared with the hybrid advection-upstream-splitting method (AUSMV) while maintaining the same prediction accuracy. According to the “Big-O notation” analysis, the Robertson DAE approach shows a lower-order growth of computational complexity, proving its good potential in enhancing numerical efficiency, especially when handling simulations with larger scales. The validation of both the numerical schemes for the solution of the DFM was performed using measured data from a test well drilled with water-based mud (WBM). This study offers a novel numerical solution to the DFM that can significantly reduce the computational time required for gas-kick simulation while maintaining high prediction accuracy. This approach enables the application of high-fidelity two-phase-flow models in model-prediction-based decision making and automated influx management with MPD systems.


2011 ◽  
Vol 26 (S1) ◽  
pp. s57-s57 ◽  
Author(s):  
P. Čech ◽  
V. Bures ◽  
T. Otcenaskova ◽  
K. Antos ◽  
J. Vaněk

Emergency situations such as biological or chemical incidents require prompt decision making. The problem is that the authorized personnel responsible for conduction the response operations might lack the knowledge about the agent's biological, chemical and epidemiological characteristics that would influence the impact of the incident. Thus the effect of response operations on lives and assets could hardly be anticipated. The paper suggests simulation based approach to provide appropriate decision making support in such situations. The simulation would imitate the development of an emergency situation under various scenarios and help to determine the proper response operations by which the casualties and loss of assets would be minimized. The aim of the paper is to present the simulation of a spread of an agent in an environment and the corresponding impact on population. The simulation is based on a model with incorporated knowledge about environmental and agent characteristics such as weather conditions, transmission, fatality, incubation period combined also with demographic information. The provided simulation forms a part of the proposed non-military decision support framework for emergency response operations during biochemical incidents.


2021 ◽  
pp. 1321103X2097480
Author(s):  
Jean-Philippe Després

Accessing the strategies implemented during real-time musical creative processes represents a challenge for researchers. Retrospective verbal protocol with subjective aided recall (RVPwSAR), where a first-person video is used as an aid to elicit feedback from a subject, has shown great potential for the study of real-time decision-making in sport, therapy, emergency situations, and consumer behavior. This article reviews research methods studying real-time decision-making and discusses the implications of a previous study using RVPwSAR to observe decision-making strategies during musical improvisation. The objective of this article is twofold: (1) to present the contributions and limitations of the RVPwSAR to arrive at a better understanding of the strategies implemented in real-time during musical improvisation; (2) to discuss the potential of the RVPwSAR for studying the strategies implemented in other real-time musical creative tasks. I argue that research where the RVPwSAR is applied may contribute to a better understanding of the strategies used during the real-time musical process, and, ultimately, contribute to the promotion of creative musical teaching and learning.


Author(s):  
Shreyanshu Parhi ◽  
S. C. Srivastava

Optimized and efficient decision-making systems is the burning topic of research in modern manufacturing industry. The aforesaid statement is validated by the fact that the limitations of traditional decision-making system compresses the length and breadth of multi-objective decision-system application in FMS.  The bright area of FMS with more complexity in control and reduced simpler configuration plays a vital role in decision-making domain. The decision-making process consists of various activities such as collection of data from shop floor; appealing the decision-making activity; evaluation of alternatives and finally execution of best decisions. While studying and identifying a suitable decision-making approach the key critical factors such as decision automation levels, routing flexibility levels and control strategies are also considered. This paper investigates the cordial relation between the system ideality and process response time with various prospective of decision-making approaches responsible for shop-floor control of FMS. These cases are implemented to a real-time FMS problem and it is solved using ARENA simulation tool. ARENA is a simulation software that is used to calculate the industrial problems by creating a virtual shop floor environment. This proposed topology is being validated in real time solution of FMS problems with and without implementation of decision system in ARENA simulation tool. The real-time FMS problem is considered under the case of full routing flexibility. Finally, the comparative analysis of the results is done graphically and conclusion is drawn.


2020 ◽  
Author(s):  
Akmal Rustamov

The paper addresses the problem of increasing transportation safety due to usage of new possibilities provided by modern technologies. The proposed approach extends such systems as ERA-GLONASS and eCall via service network composition enabling not only transmitting additional information but also information fusion for defining required emergency means as well as planning for a whole emergency response operation. The main idea of the approach is to model the cyber physical human system components by sets of services representing them. The services are provided with the capability of self- contextualization to autonomously adapt their behaviors to the context of the car-driver system. The approach is illustrated via an accident emergency situation response scenario. “ERA-GLONASS” is the Russian state emergency response system for accidents, aimed at improving road safety and reducing the death rate from accidents by reducing the time for warning emergency services. In fact, this is a partially copied European e Call system with some differences in the data being transmitted and partly backward compatible with the European parent. The principle of the system is quite simple and logical: in the event of an accident, the module built into the car in fully automatic mode and without human intervention determines the severity of the accident, determines the vehicle’s location via GLONASS or GPS, establishes connection with the system infrastructure and in accordance with the protocol, transfers the necessary data on the accident (a certain distress signal). Having received the distress signal, the employee of the call center of the system operator should call the on-board device and find out what happened. If no one answers, send the received data to Sistema-112 and send it to the exact coordinates of the team of rescuers and doctors, and the last one to arrive at the place is given 20 minutes. And all this, I repeat, without the participation of a person: even if people caught in an accident will not be able to independently call emergency services, the data on the accident will still be transferred. In this work intended to add some information about applying system project in Uzbek Roads especially mountain regions like “Kamchik” pass. The Kamchik Pass is a high mountain pass at an elevation of 2.306 m above the sea level, located in the Qurama Mountains in eastern Uzbekistan and its length is about 88km.The road to reach the pass is asphalted, but there are rough sections where the asphalt has disappeared. It’s called A373. The old road over the pass was by passed by a tunnel built in 1999. On the horizon, the snow-capped peaks of the Fan Mountains come into view. The pass is located in the Fergana Valley between the Tashkent and Namangan Regions.


Sign in / Sign up

Export Citation Format

Share Document