Discussing the dating of ferruginous duricrusts: promises from mineralogy of supergene minerals with non-destructive microsampling

Author(s):  
Karina Marques ◽  
Thierry Allard ◽  
Guillaume Morin ◽  
Benoît Baptiste ◽  
Cécile Gautheron ◽  
...  

<p>Ferruginous duricrusts record a part of the Earth’s geodynamical and climatic history in tropical area, because they can be formed over a wide geologic period. However, the events and processes related to their formation, transformation and distribution are still obscure. This is mainly due to the complexity arising from their finely divided and polycrystalline nature together with the coexistence of various generations of supergene minerals, such as iron and aluminum oxides, oxyhydroxides or hydroxides (e.g. goethite, hematite and gibbsite) and kaolinite, even at microscopic scale. Classical mineralogical investigations are often realized using powders samples, which hinders subsequent analyses on the same sample, such as SEM or (U-Th)/He dating. Thus, the aim of this study was to propose a new way to investigate the mineralogy of supergene ferruginous samples on micrometric grains that will be analyzed by (U-Th)/He dating method. Prior to this analysis, we first compare the X-ray diffraction data of grains and small amounts of powders looking to reveal the mineralogical composition of populations of secondary minerals of a ferruginous duricrust by taking into account the heterogeneity of the material. Samples were collected from a ferruginous duricrust with pisolitic structure developed over epiclastic conglomerates and sandstones deposited by alluvial fan and fluvial streams from the Upper Cretaceous at the western Minas Gerais state (Brazil). The geomorphology of the study area is delineated by remnants of paleosurface (up to 1,000 m a.s.l.), which comprises an important record of long-term Brazilian continental history.Macroscopic facies recognized on duricrusts sections were described, which allowed the identification of various populations of secondary minerals. After this detailed description, grains (size < 0.5 mm) were collected and powder samples of each population were prepared by crushing. Overall, the results point out that the grain and powder samples could be used to identify mineralogical composition at fine resolution of secondary minerals from ferruginous duricrusts. In addition, XRD results are similar for both types of sample preparation, however the < 0.5 mm grain samples are more advantageous because they are not destructive and thus allow to get a finer description of the mineralogy of different populations and can subsequently be used for e.g. (U-Th)/He dating, providing critical information for interpreting and discussing the ages of iron oxides.</p><p><strong>Grant:</strong> 19/10708-7; 17/22292-4; 17/20788-2, São Paulo Research Foundation (FAPESP)</p><p><strong>References</strong></p><p>Allard, T., Gautheron, C., Riffel, S.B., Balan, E., Soares, B.F., Pinna-Jamme, R., Derycke, A., Morin G., Bueno, G.T., Nascimento, N., 2018. Combined dating of goethites and kaolinites from ferruginous duricrusts. Deciphering the Late Neogene erosion history of Central Amazonia. Chemical Geology 479, 136-150.</p><p>Monteiro, H.S., Vasconcelos, P.M.P., Farley, K.A., Spier, C.A., Mello, C.L., 2014. (U-Th)/He geochronology of goethite and the origin and evolution of cangas. Geochim. Cosmochim. Acta  131, 267–289.</p><p>Vasconcelos, P.M., Heim, J.A., Farley, K.A., Monteiro, H.S., Waltenberg, K., 2013. <sup>40</sup>Ar/<sup>39</sup>Ar and (U–Th)/He - <sup>4</sup>He/<sup>3</sup>He geochronology of landscape evolution and channel irondeposit genesis at LynnPeak, Western, Australia. Geochim. Cosmochim. Acta 117, 283-312.</p>

2018 ◽  
Vol 479 ◽  
pp. 136-150 ◽  
Author(s):  
Thierry Allard ◽  
Cécile Gautheron ◽  
Silvana Bressan Riffel ◽  
Etienne Balan ◽  
Bruna Fernandes Soares ◽  
...  

1977 ◽  
Vol 31 (5) ◽  
pp. 386-402 ◽  
Author(s):  
Harold P. Larson ◽  
Uwe Fink

The techniques of Fourier transform spectroscopy combined with large aperture telescopes and advances in detector technology now permit infrared (λ > 1 µ) observations of the surfaces of small solar system objects such as asteroids and satellites. The results demonstrate that this activity can produce important new compositional information related to the origin and evolution of the solar system. The detection of water ice in Saturn's rings and on some of the satellites of Jupiter and Saturn confirm expectations that ices are important mineralogical components in the chemistry of the outer solar system. More recent studies of the mineralogical composition of the surfaces of asteroids provide a new observational link to the origin of meteorites and the early thermal history of the solar system. These results have been dependent upon supporting laboratory studies of the spectral behavior of ices and minerals to define the potential, and limitations, of the method. Since many of the astronomical observations have been exploratory in nature, prospects are good that continued refinement of the techniques will lead to additional insights.


Author(s):  
Arezki Tagnit-Hamou ◽  
Shondeep L. Sarkar

All the desired properties of cement primarily depend on the physicochemical characteristics of clinker from which the cement is produced. The mineralogical composition of the clinker forms the most important parameter influencing these properties.Optical microscopy provides reasonably accurate information pertaining to the thermal history of the clinker, while XRDA still remains the proven method of phase identification, and bulk chemical composition of the clinker can be readily obtained from XRFA. Nevertheless, all these microanalytical techniques are somewhat limited in their applications, and SEM/EDXA combination fills this gap uniquely by virtue of its high resolution imaging capability and possibility of instantaneous chemical analysis of individual phases.Inhomogeneities and impurities in the raw meal, influence of kiln conditions such as sintering and cooling rate being directly related to the microstructure can be effectively determined by SEM/EDXA. In addition, several physical characteristics of cement, such as rhcology, grindability and hydraulicity also depend on the clinker microstructure.


2021 ◽  
Author(s):  
Juliette Debrie ◽  
Dimitri Prêt ◽  
Karim Benzerara ◽  
Jean Paul Saint Martin

<p>Stromatolites, i.e. macroscopically laminated carbonate rocks formed by diverse microbial communities, are particularly emblematic geobiological materials since they are the oldest evidence of life-mineral interactions, dated up to 3.5 Gyrs ago.  They are found throughout the history of the Earth and have received strong attention because they provide precious information about microbial paleobiodiversity and paleoenvironments. However, while this information is interpreted based on our knowledge about modern analogs, the latter remains very incomplete. Here, we studied recently discovered modern stromatolites from Mari Ermi<sup>1</sup>, a coastal pond in Western Sardinia, that seasonally experience severe evaporation and broad salinity variations. For this purpose, we explored the mineralogical composition of these unique sedimentary archives and its spatial variations in order to gain better insight into how mineral phases record the conditions and processes of their formation. We investigated the heterogeneous distribution of minerals using quantitative X-ray chemical maps provided by energy dispersive x-ray spectrometry analyses coupled with scanning electron microscopy (SEM-EDXS). Hyperspectral maps were analyzed using an innovative data treatment method <sup>2</sup> allowing phase recognition within the complex mineral mixtures and solid solutions encountered. This method provided quantitative data on spatial distribution, modal content and associated calculated unit formulas for each identified mineral and phase with a hundred nanometer resolution. Based on these results, we will discuss the origin of the laminations in the stromatolites.</p><p>Reference:</p><p>1. Saint Martin, J.-P. & Saint Martin, S. Geo-Eco-Marina <strong>21</strong>, 35–53 (2015a).</p><p>2. Prêt, D. et al. American Mineralogist <strong>95</strong>, 1379–1388 (2010).</p>


2001 ◽  
Vol 82 (4) ◽  
pp. 693-712 ◽  
Author(s):  
Peter Simmonds

The spread and origins of hepatitis C virus (HCV) in human populations have been the subject of extensive investigations, not least because of the importance this information would provide in predicting clinical outcomes and controlling spread of HCV in the future. However, in the absence of historical and archaeological records of infection, the evolution of HCV and other human hepatitis viruses can only be inferred indirectly from their epidemiology and by genetic analysis of contemporary virus populations. Some information on the history of the latter may be obtained by dating the time of divergence of various genotypes of HCV, hepatitis B virus (HBV) and the non-pathogenic hepatitis G virus (HGV)/GB virus-C (GBV-C). However, the relatively recent times predicted for the origin of these viruses fit poorly with their epidemiological distributions and the recent evidence for species-associated variants of HBV and HGV/GBV-C in a wide range of non-human primates. The apparent conservatism of viruses over long periods implied by these latter observations may be the result of constraints on sequence change peculiar to viruses with single-stranded genomes, or with overlapping reading frames. Large population sizes and intense selection pressures that optimize fitness may be the factors that set virus evolution apart from that of their hosts.


Sign in / Sign up

Export Citation Format

Share Document