UAV-based imagery analysis with machine learning to facilitate microbial water quality monitoring of irrigation ponds

Author(s):  
Yakov Pachepsky ◽  
Billie Morgan ◽  
Matthew Stocker ◽  
Moon Kim

<p>Surface waters can contain pathogenic microorganisms that may ​be detrimental to individuals consuming produce grown with irrigation. Fecal indicator organisms, primarily Escherichia coli, are commonly used to estimate the potential presence of pathogens in irrigation waters.  Concentrations of E. coli in the water of irrigation ponds are often highly variable in space and time. Water sampling that is frequent in time and dense in space, is impractical. Unmanned aerial systems (drones, or UAVs) have shown the potential to provide informative imagery. We hypothesized that the UAV-based imagery can facilitate the microbial water quality monitoring in ponds by reflecting the differences in bacteria habitats. ​Six times over the summer, we coupled monitoring of 17 water quality parameters ​of 23 locations across an irrigation pond in Maryland with 14 images ​captured by a MicaSense RedEdge M and modified GoPro cameras. The modified GoPro Images were demosaiced into red, green, and blue bands for each of the cameras. The random forest methodology was used to evaluate the accuracy and reliability of relationships between several combinations of measured ​explanatory variables, and the logarithm of the E. coli concentration as the variable to predict. Random forest models with only imagery data as the ​explanatory variables, and ​models with all measured data as explanatory variables had coefficients of determination between 0.5 ​to 0.6, and 0.6 ​to 0.7, respectively. The most important explanatory variables for the model with only imagery input were digital numbers ​obtained from the blue band of the “visible only” filter image, and from the red bands of the “infrared only” and “visible only” filter images.  When all measurements were used, the most important explanatory variables were concentrations of chlorophyll a and fluorescent dissolved organic matter, as well as and digital number​s from the red band ​of the “infrared only” filter image. There appears to be a potential for the UAV-based imagery to provide dense spatial coverage of ponds with subsequent delineation of a small number of relatively uniform zones for informed water sampling. </p>

2021 ◽  
Author(s):  
Megan Devane ◽  
Brent Gilpin ◽  
Jennifer Webster-Brown ◽  
Louise Weaver ◽  
Pierre Dupont ◽  
...  

<p>The intensification of dairy farming on the agricultural landscape in New Zealand has raised concerns about pollution sources from dairy faecal runoff into waterways. The transport of faecal pollution from farms into waterways is facilitated by overland flow, which can result from rain and flood events, poorly designed irrigation practices and the washing down of milking sheds.</p><p>An important step for mitigation of pollution is the identification of the source(s) of faecal contamination. When elevated levels of faecal indicator bacteria (FIB) such as <em>Escherichia coli </em>are identified in a waterway, faecal source tracking (FST) tools such as microbial source tracking (MST) using quantitative polymerase chain reaction (qPCR), and faecal steroids (for example, cholesterol) provide information about the sources of faecal contamination. The understanding of the fate (degradation/persistence) and transport of these FST markers in the environment is recognised as an important requirement for the interpretation of water quality monitoring in aquatic environments.</p><p>This study investigated the effects of faecal decomposition on bovine faecal indicators (<em>E. coli </em>and FST markers: bovine-associated qPCR markers and ten faecal steroids) by monitoring the effect of flood and rainfall events on simulated cowpats over a five and a half month period under field conditions. Two separate spring/summer trials were conducted to evaluate: Trial 1) the mobilisation under simulated flood conditions of the faecal indicators from irrigated versus non-irrigated cowpats, Trial 2) the mobilisation of faecal indicators from non-irrigated cowpat flood runoff versus runoff after simulated rainfall onto non-irrigated cowpats.</p><p>The microbial community changes within the decomposing cowpat (as illustrated by amplicon-based metagenomic analysis) were expected to impact on the survival/persistence of the bacterial targets of the MST markers, and also alter the ratio between faecal sterols and their biodegradation products, the stanols. It was hypothesised, therefore, that there would be:</p><ul><li>Changes over time in the concentration of<em> E. coli </em>and the bovine-associated MST markers mobilised into the cowpat runoff</li> <li>Alterations in the FST ratio signature of the ten measured faecal steroids, resulting in a change from a bovine faecal steroid signature in fresh cowpat runoff to other animal faecal signatures in the runoff from decomposing cowpats</li> <li>A difference in the mobilisation decline rates of all FST and microbial markers within a treatment regime and between treatments.</li> </ul><p>Linear regression analysis was undertaken to establish mobilisation decline rates for each of the analytes in the mobilisable phase from the cowpat runoff treatments, with calculation of the time taken in days for reduction in 90% of the concentration (T<sub>90</sub>), and statistical comparison of the regression coefficients (slopes) of all analytes. The results will include a discussion of the impacts of the study’s observations on the interpretation of faecal indicator assessments for water quality monitoring in waterways influenced by sources of faecal contamination.</p>


2021 ◽  
Author(s):  
Rehan Deshmukh ◽  
Utpal Roy

Developing countries due to socio-economic conditions are more prone to frequent pathogenic outbreaks; inadequate sanitation and water quality monitoring are also responsible for such conditions. Therefore, it is of paramount importance to provide microbiologically safe food/water in order to protect public health. Several flaws in traditional culturing methods have sparked a surge in interest in molecular techniques as a means of improving the efficiency and sensitivity of microbiological food/water quality monitoring. Molecular identification of water contaminants, mainly Escherichia coli, has been extensively used. Several of the molecular-based techniques are based on amplification and detection of nucleic acids. The advantages offered by these PCR-based methods over culture-based techniques are a higher level of specificity, sensitivity, and rapidity. Of late, the development of a biosensor device that is easy to perform, highly sensitive, and selective has the potential to become indispensable in detecting low CFU of pathogenic E. coli in environmental samples. This review seeks to provide a vista of the progress made in the detection of E. coli using nucleic acid-based approaches as part of the microbiological food/water quality monitoring.


2013 ◽  
Vol 2013 (9) ◽  
pp. 6234-6242 ◽  
Author(s):  
Ting Lu ◽  
Vikram Kapoor ◽  
David Wendell ◽  
MaryLynn Lodor ◽  
Biju George ◽  
...  

2018 ◽  
Vol 47 (5) ◽  
pp. 931-938 ◽  
Author(s):  
Y. A. Pachepsky ◽  
A. Allende ◽  
L. Boithias ◽  
K. Cho ◽  
R. Jamieson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document