The behavior of Graviy wave during the unusual QBO structure in 2015/2016

Author(s):  
Haiyan Li ◽  
Qingxiang Li

<p>We explored the gravity wave behavior and its role for the unusual QBO structure in 2015/2016 by analyzing the data of U.S. radiosonde with high vertical resolution over four equatorial stations from 1998 to 2017. The result implies that the gravity wave behavior should play an important role during the QBOW phase interrupted around 22 km in 2015/2016 winter. While the role of gravity wave was not as important as Kelvin waves during the prolonged and upward propagating westerly zonal wind around 27 km. The enhanced gravity wave may be generated by the instability of the stratospheric atmosphere rather than the tropospheric convection because the convection is weak during the unusual QBO structure over the four equatorial stations.</p>

2010 ◽  
Vol 67 (5) ◽  
pp. 1315-1336 ◽  
Author(s):  
Kazuyuki Miyazaki ◽  
Shingo Watanabe ◽  
Yoshio Kawatani ◽  
Kaoru Sato ◽  
Yoshihiro Tomikawa ◽  
...  

Abstract The relative roles of atmospheric motions on various scales, from mesoscale to planetary scale, in transport and mixing in the extratropical tropopause region are investigated using a high-vertical-resolution general circulation model (GCM). The GCM with a vertical resolution of about 300 m explicitly represents the propagation and breaking of gravity waves and the induced transport and mixing. A downward control calculation shows that the Eliassen–Palm (E-P) flux of the gravity waves diverges and induces a mean equatorward flow in the extratropical tropopause region, which differs from the mean poleward flow induced by the convergence of large-scale E-P fluxes. The diffusion coefficients estimated from the eddy potential vorticity flux in tropopause-based coordinates reveal that isentropic motions diffuse air between 20 K below and 10 K above the tropopause from late autumn to early spring, while vertical mixing is strongly suppressed at around 10–15 K above the tropopause throughout the year. The isentropic mixing is mainly caused by planetary- and synoptic-scale motions, while small-scale motions with a horizontal scale of less than a few thousand kilometers largely affect the three-dimensional mixing just above the tropopause. Analysis of the gravity wave energy and atmospheric instability implies that the small-scale dynamics associated with the dissipation and saturation of gravity waves is a significant cause of the three-dimensional mixing just above the tropopause. A rapid increase in the static stability in the tropopause inversion layer is considered to play an important role in controlling the gravity wave activity around the tropopause.


1997 ◽  
Vol 125 (6) ◽  
pp. 1185-1211 ◽  
Author(s):  
Michael L. Kaplan ◽  
Steven E. Koch ◽  
Yuh-Lang Lin ◽  
Ronald P. Weglarz ◽  
Robert A. Rozumalski

2021 ◽  
Author(s):  
Hella Garny ◽  
Simone Dietmüller ◽  
Roland Eichinger ◽  
Aman Gupta ◽  
Marianna Linz

<p>The stratospheric transport circulation, or Brewer-Dobson Circulation (BDC), is often conceptually seperated into advection along the residual circulation and two-way mixing. In particular the latter part has recently been found to exert a strong influence on inter-model differences of mean age of Air (AoA), a common measure of the BDC. However, the precise reason for model differences in two-way mixing remains unknown, as many model<br>components in multi-model projects differ. One component that likely plays an important role is model resolution, both vertically and horizontally. To analyse this aspect, we carried out a set of simulations with identical and constant year 2000 climate forcing varying the spectral horizontal<br>resolution (T31,T42,T63,T85) and the number of vertical levels (L31,L47,L90). We find that increasing the vertical resolution leads to an increase in mean AoA. Most of this change can be attributed to aging by mixing. The mixing efficiency, defined as the ratio of isentropic mixing strength and the diabatic circulation, shows the same dependency on vertical resolution. While horizontal resolution changes do not systematically change mean AoA, we do<br>find a systematic decrease in the mixing efficiency with increasing horizontal resolution. Non-systematic changes in the residual circulation partly compensate the mixing efficiency changes, leading to the non-systematic mean AoA changes. The mixing efficiency changes with vertical and horizontal resolution are consistent with expectations on the effects of numerical dispersion on mean AoA. To further investigate the most relevant regions of mixing differences, we analyse height-resolved mixing efficiency differences. Overall, this work will help to shed light on the underlying reasons for the large biases of climate models in simulating stratospheric transport.</p>


2016 ◽  
Vol 57 (4) ◽  
pp. 1021-1028 ◽  
Author(s):  
G. Manju ◽  
M.K. Madhav Haridas ◽  
R.P. Aswathy

2013 ◽  
Vol 559 ◽  
pp. L6 ◽  
Author(s):  
A. Ziad ◽  
F. Blary ◽  
J. Borgnino ◽  
Y. Fanteï-Caujolle ◽  
E. Aristidi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document