scholarly journals Using buildings' foundation as a GHE in moderate climates

Author(s):  
Lazaros Aresti ◽  
Paul Christodoulides ◽  
Georgios A. Florides

<p>Shallow Geothermal Energy, a Renewable Energy Source, finds application through Ground Source Heat Pumps (GSHPs) for space heating/cooling via tubes directed into the ground. There are two main categories of Ground Heat Exchanger (GHE) types: the horizontal and the vertical types. Ground Heat Exchangers (GHEs) of various configurations, extract or reject heat into the ground. Even though GSHP have higher performance in comparison to the Air Source Heat Pumps (ASHPs), the systems high initial costs and long payback period have made it unattractive as an investment. GSHP systems can also be utilized in the buildings foundation in the form of Thermo-Active Structure (TAS) systems or Energy Geo-Structures (EGS), with applications such as energy piles, barrette piles, diaphragm walls, shallow foundations, retaining walls, embankments, and tunnel linings. Energy piles are reinforced concrete foundations with geothermal pipes, whereby the buildings foundations are utilized to provide space heating and cooling. Apart from energy piles, another EGS system can be achieved by the incorporation of the building’s foundation bed as a GHE. Foundation piles are not required in all constructions, but a building’s foundation bed is mandatory. This configuration is still based on the principles of the energy pile.</p><p>Energy piles have yet to be applied in Cyprus and, thus, a preliminary assessment considered and investigated before application would be useful. The potential of the GSHP systems by utilizing the building’s foundation through energy piles is considered here, for a moderate climate such as Cyprus, towards a Zero Energy Building. Typical foundation piles geometry in Cyprus consists of a 10m depth, a 0.4m diameter and reinforced concrete as a grout material, which is used at the foundation bed of the building. A typical dwelling in Cyprus is selected to be numerically modelled in this study. It is a three-bedroom, two-storey house with a 190m<sup>2</sup> total floor area, matching the thermal characteristics of a Zero Energy Building (i.e., U-values of 0.4W/m<sup>2</sup>/K on all walls and ceiling and 2.25 W/m<sup>2</sup>/K on all doors and windows, respectively). A full-scale model is developed in COMSOL Multiphysics software, to examine the energy rejected or absorbed into the ground by taking the heating and cooling loads of the typical dwelling in Cyprus. The convection-diffusion equation for heat transfer is used with the three-dimensional conservation of heat transfer for an incompressible fluid on all domains except the pipes, where a simplified equation is used. Different months in winter and summer are accounted for the simulations and the fluid-in – fluid-out temperature difference is presented. Finally, an economic evaluation of the systems examined above is presented, in order to check its viability. It is concluded that utilizing the dwelling’s foundations can be a better investment than using GHEs in boreholes.</p>

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6483
Author(s):  
Jinli Xie ◽  
Yinghong Qin

Energy piles, combined ground source heat pumps (GSHP) with the traditional pile foundation, have the advantages of high heat transfer efficiency, less space occupation and low cost. This paper summarizes the latest research on the heat transfer and bearing capacity of energy piles. It is found that S-shaped tubes have the largest heat transfer area and the best heat transfer efficiency; that energy piles need to be designed conservatively, such as adjusting the safety coefficient, number and spacing of the piles according to the additional temperature loads; and that unbalanced surface temperature has not been resolved, caused by uneven refrigeration/heating demand in one cycle. A composite energy pile applied to water-rich areas is proposed to overcome the decay of bearing and heat transfer performance. Besides, most of the heat transfer models are borehole-oriented and will fit for energy piles effectively if the models support variable ground temperature boundary conditions.


2020 ◽  
Vol 29 (9) ◽  
pp. 1227-1237
Author(s):  
Haiwen Shu ◽  
Hongbin Wang ◽  
Guangyu Cao

A nearly zero energy building (NZEB) can achieve significant energy saving by reducing its air-conditioning load greatly. At the same time, an NZEB should also achieve a comfortable thermal environment. In this paper, a parallel-pipe type natural heat transfer air-conditioning terminal device is proposed and studied for use in NZEB. The terminal device is able to provide both heating and cooling (including sensible and latent cooling) for a building without noise or air disturbance. The advantages of the terminal device have been demonstrated by comparing with other air-conditioning terminals. Experimental data of the heating and cooling performance of the device under different operation conditions were collected and analysed. The calculation models for the heating and cooling capacities of the device were obtained through data regression analysis, and the flow resistance curve of the device was obtained by means of experimental measurement under various flow rates. In addition, comparison was made on the heating and cooling capacities between the device and a radiant floor that also features little noise or air disturbance. Results show that the heating and cooling capacities of the device were 41.5% and 46.8% higher than the maximum capacities of the radiant floor, respectively. This research laid a foundation for the engineering application of the air-conditioning terminal device.


2003 ◽  
Vol 11 (2) ◽  
pp. 191-198 ◽  
Author(s):  
David Banks ◽  
Helge Skarphagen ◽  
Robin Wiltshire ◽  
Chris Jessop

Sign in / Sign up

Export Citation Format

Share Document