heat transfer efficiency
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 116)

H-INDEX

16
(FIVE YEARS 4)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 161
Author(s):  
Wilasinee Sangsom ◽  
Chouw Inprasit

Jet impingement has been effective in reducing the process time and improvement of product quality in various industrial applications, such as textile and paper drying, electronic cooling, glass quenching and food processing. The current work applied innovative steam injection to liquid food continuous sterilization. The multiple impingement jets of steam and product came together in the impingement tank. The effects were investigated on the Reynolds number, steam temperature and jet-to-target spacing (H/d), sterilization temperature and heat transfer efficiency in water and pineapple juice tests. The Reynolds number was based on the nozzle configuration and liquid flow rate. The study investigated product injection plates formed using two, three or four circular holes (diameter 2 mm), steam injection plates with six, nine or twenty circular holes (diameter 1 mm), steam temperatures of 120, 125 or 130 °C and H/d values of 1, 3, 5 or 7. The different options were tested with water to determine the optimal conditions, and then tested with pineapple juice. The results showed that the optimal conditions from water testing that provided the highest heat transfer efficiency occurred with two jet nozzles, six steam injection plates, a steam temperature of 120 °C and an H/d value of 1.


2022 ◽  
Vol 69 (1) ◽  
Author(s):  
Housseyn Smahi ◽  
Djilali Ameur ◽  
Joanna Dib ◽  
Isabelle Raspo

AbstractIn this paper, we present a numerical study along with an exhaustive adsorption investigation in a binary dilute mixture model nearby the solvent’s critical point in a configuration relevant for soil remediation. By means of this model, mass and heat transfer efficiency were qualitatively and quantitatively discussed through this work. The convergence of the solution was evaluated on the values of the Nusselt and Sherwood numbers. The results reveal intense convection expanding into the cavity close to the critical point, thus enabling homogeneous adsorption of the solute. Moreover, the mass fraction perturbation isolines exhibit the existence, along the adsorbent plate, of a thin boundary layer which becomes thinner when approaching the critical point.


2022 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Zhiwei Wu ◽  
Caifu Qian

Baffles with holes in different diameters (or HDD baffles) and conically-corrugated tubes are respectively longitudinal flow baffle and high-efficiency heat exchange tubes proposed by the author. In this paper, vibrations of tube bundles with HDD baffles and fluid flow as well as heat transfer inside conically-corrugated tubes were numerically simulated, and the heat exchanger with conically-corrugated tubes and HDD baffles was tested for the heat transfer efficiency. It is found that compared with the traditional segmental baffles, tube bundle vibrations in heat exchangers, if using the HDD baffles, can be significantly reduced. Regarding heat transfer efficiency, conically-corrugated tubes are much better than smooth tubes and even better than other high-efficiency heat transfer tubes. Compared with the traditional heat exchangers, heat exchangers constructed with conically-corrugated tubes and the HDD baffles can provide better heat transfer efficiency and less tube bundle vibration.


Author(s):  
Awnish Kumar

Abstract: Machine Learning algorithms are widely used in various fields such as energy sectors, manufacturing sectors and aerospace sectors. These algorithms are used mainly in predictive and optimization purpose. The present study deals with the application of two machine learning algorithms i.e. Random Forest algorithm and Support Vector Machine Algorithm to predict the heat transfer efficiency of a flowing nano-fluid in a helically coiled pipe. Keywords: Machine Learning; Optimization; Nano-fluid; Heat Transfer


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Yu Zhang ◽  
Zhentao Zhang ◽  
Junling Yang ◽  
Yunkai Yue ◽  
Huafu Zhang

Inspired by the superhydrophobic properties of some plants and animals with special structures, such as self-cleaning, water repellent, and drag reduction, the research on the basic theory and practical applications of superhydrophobic surfaces is increasing. In this paper, the characteristics of superhydrophobic surfaces and the preparation methods of superhydrophobic surfaces are briefly reviewed. The mechanisms of drag reduction on superhydrophobic surfaces and the effects of parameters such as flow rate, fluid viscosity, wettability, and surface morphology on drag reduction are discussed, as well as the applications of superhydrophobic surfaces in boiling heat transfer and condensation heat transfer. Finally, the limitations of adapting superhydrophobic surfaces to industrial applications are discussed. The possibility of applying superhydrophobic surfaces to highly viscous fluids for heat transfer to reduce flow resistance and improve heat transfer efficiency is introduced as a topic for further research in the future.


2021 ◽  
Vol 23 (11) ◽  
pp. 641-654
Author(s):  
Huthaifa Ahmed Abed ◽  
◽  
Majid H. Majeed ◽  
Ahmad Q. Mohammad ◽  
◽  
...  

The wickless heat pipe (theroosyphon) is ordinate of three divisions the condenser, evaporator and insulated region (adiabatic region). In this work, the condenser and evaporator regions are made of copper tube with a length of 300 mm, for each an exterior diameter of 28.2 mm and an interior diameter of 26.4 mm. While the insulated region has a length of 400 mm and an exterior diameter of 28.2 mm. The evaporator region of the heat pipe bounded by a coiled heat source that represented the heat source. The condenser is encapsulated in a plastic cylinder to accommodate the flow of the cooling water. Thermosyphon has been filled by R- 134a working fluid. The effect of heat input, filling ratio and sink temperature were all tested and measurement. The results showed that the heat transfer performance increases when the applied energy to the evaporator increases while the total heat transfer efficiency of the heat pipe increases the gradient temperature between the medium of the evaporator and the condenser increases. The optimum fill rate is 119 % (250g), the sink temperature is 20°C, and it has been found to be suitable for optimum heat pipe performance.


2021 ◽  
Vol 29 (1) ◽  
pp. 1-15
Author(s):  
R. Saidur ◽  
Mohammed Ahmed ◽  
Ahmed Qays Abdullah ◽  
Omer A. Alawi ◽  
Balaji Bakthavatchalam ◽  
...  

Nano-refrigerant is announced to become an excellent refrigerant, which often improves heat transfer efficiency in the cooling systems. Different materials can be applied to be suspended in traditional coolants in the same way as nanoparticles. In this comprehensive research, mathematical modeling was used to investigate the effect of suspended nanoparticles (Al2O3, CuO, SiO2 and ZnO) on 1,1,1,2-Tetrafluoroethane, R-134a. The thermal conductivity, dynamic viscosity, density and specific heat capacity of the nano-refrigerant in an evaporator pipe were investigated. Compared to conventional refrigerants, the maximum increase in thermal conductivity was achieved by Al2O3/R-134a (96.23%) at a volume concentration of 0.04. At the same time, all nano-refrigerant types presented the same viscosity enhancement of(45.89%) at the same conditions. These types of complex thermophysical properties have enhanced the heat transfer tendencies in the pipe. Finally, the nano-refrigerant could be a likely working fluid generally used in the cooling unit to improve high-temperature transfer characteristics and save energy use.


Sign in / Sign up

Export Citation Format

Share Document