Effects of the Tibetan Plateau on East Asian Summer Monsoon via Weakened Transient Eddies

Author(s):  
Qiaoling Ren ◽  
Song Yang ◽  
Xinwen Jiang ◽  
Yang Zhang ◽  
Zhenning Li

<p>Previous studies have revealed that the Tibetan Plateau (TP) can weaken the high-frequency and low-frequency transient eddies (TE) transported along the westerly jet. Here the effects of TP on East Asian summer monsoon via weakened TE are investigated based on the simulations by the NCAR Community Earth System Model, in which a nudging method is used to amplify the TP’s inhibition of TE without changing the steady dynamic and thermodynamic effects of TP. Results reveal that the weakened TE by TP weaken the East Asian westerly jet (EAWJ) and shift the jet southward via transient vorticity flux. The southward EAWJ accompanied with reduced poleward transport of moisture by TE results in less rainfall in northern East Asia but more rainfall in southern East Asia, particularly in early summer when the EAWJ is stably located over the TP and the meridional gradient of water vapor is large. Furthermore, the anomalous precipitation can move the EAWJ further southward through the anomalous diabatic heating in early summer, forming a positive feedback. Therefore, the TP’s inhibition of TE can shift the East Asian rain belt southward, different from the TP’s steady forcing which favors a poleward shift of the rain belt. It is also demonstrated that the atmospheric internal variability can lead to the south-flood-north-drought pattern of summer rainfall change over East Asia, indicating the important role of TE in East Asian summer monsoon.</p>

2021 ◽  
pp. 1-59
Author(s):  
QIAOLING REN ◽  
XINGWEN JIANG ◽  
YANG ZHANG ◽  
ZHENNING LI ◽  
SONG YANG

AbstractIt is known that the Tibetan Plateau (TP) can weaken the transient eddies (TEs) transported along the westerly jet stream. This study investigates the effects of the persistently suppressed TEs by the TP on the East Asian summer monsoon and the associated mechanisms using the NCAR Community Earth System Model. A nudging method is used to modify the suppression of the TEs without changing the steady dynamic and thermodynamic effects of the TP.The suppressed TEs by the TP weaken the East Asian westerly jet stream through the weakened poleward TE vorticity flux. On the one hand, the weakened jet stream leads to less (more) rainfall in northern (southern) East Asia by inducing anomalous moisture convergence, mid-tropospheric warm advection, and upper-level divergence, particularly in early summer when the eastward propagation of TE suppression by the TP is strong. On the other hand, the precipitation anomalies can shift the East Asian westerly jet stream southward and promote the moisture convergence in southern East Asia through latent heat release. Therefore, the persistent suppression of the TEs leads to a southward shift of the East Asian rain belt by a convective feedback, as previously found that the steady thermodynamic and dynamic forcings of the TP favored a northward shift of the rain belt. This study suggests that the anomalously weak TEs can lead to the south-more-north-less rainfall change over East Asia.


2009 ◽  
Vol 22 (8) ◽  
pp. 2095-2110 ◽  
Author(s):  
Kyung-Hee Seol ◽  
Song-You Hong

Abstract In 2003, a climate extreme accompanying a wet and cool summer over East Asia was recorded over the East Asian countries including central China, Korea, and Japan. A possible relation of this record-breaking summer in East Asia to above-normal snowfall over the Tibetan Plateau in spring has been investigated using the National Centers for Environmental Prediction (NCEP) global and regional models. The changes in the simulated East Asian summer monsoon circulations in response to snow anomalies over Tibet are highlighted. The results from both global and regional model experiments suggest that above-normal snowfall over the Tibetan Plateau in May induces a weakening of the Tibetan high, which leads to the formation of favorable upper-level circulations accompanying cyclonic circulation anomalies covering the East Asian region in summer. These circulation anomalies in response to the snow anomalies over the plateau are more robust and closer to what was observed in the regional than in the global model results. The sensitivity experiments also show that the precipitation and lower-level circulation anomalies in summer, caused by the snow anomalies in spring, influence the above-normal precipitation in the lower reaches of the Yangtze River basin, as revealed in previous observational studies. However, the experiments do not fully explain the observed signals in Korea and Japan since the spring snow anomaly over Tibet plays a role in weakening the western Pacific subtropical high in the simulated summer, whereas in reality the intensity of the high was stronger than normal in 2003.


2018 ◽  
Vol 9 (2) ◽  
pp. 427-439 ◽  
Author(s):  
Jiawei Liu ◽  
Haiming Xu ◽  
Jiechun Deng

Abstract. Much research is needed regarding the two long-term warming targets of the 2015 Paris Agreement, i.e., 1.5 and 2 ∘C above pre-industrial levels, especially from a regional perspective. The East Asian summer monsoon (EASM) intensity change and associated precipitation change under both warming targets are explored in this study. The multimodel ensemble mean projections by 19 CMIP5 models show small increases in EASM intensity and general increases in summer precipitation at 1.5 and 2 ∘C warming, but with large multimodel standard deviations. Thus, a novel multimodel ensemble pattern regression (EPR) method is applied to give more reliable projections based on the concept of emergent constraints, which is effective at tightening the range of multimodel diversity and harmonize the changes of different variables over the EASM region. Future changes projected by using the EPR method suggest decreased precipitation over the Meiyu belt and increased precipitation over the high latitudes of East Asia and Central China, together with a considerable weakening of EASM intensity. Furthermore, reduced precipitation appears over 30–40∘ N of East Asia in June and over the Meiyu belt in July, with enhanced precipitation at their north and south sides. These changes in early summer are attributed to a southeastward retreat of the western North Pacific subtropical high (WNPSH) and a southward shift of the East Asian subtropical jet (EASJ), which weaken the moisture transport via southerly wind at low levels and alter vertical motions over the EASM region. In August, precipitation would increase over the high latitudes of East Asia with more moisture from the wetter area over the ocean in the east and decrease over Japan with westward extension of WNPSH. These monthly precipitation changes would finally contribute to a tripolar pattern of EASM precipitation change at 1.5 and 2 ∘C warming. Corrected EASM intensity exhibits a slight difference between 1.5 and 2 ∘C, but a pronounced moisture increase during extra 0.5 ∘C leads to enhanced EASM precipitation over large areas in East Asia at 2 ∘C warming.


2021 ◽  
pp. 1-36
Author(s):  
Soo-Hyun Seok ◽  
Kyong-Hwan Seo

AbstractRecent studies have highlighted that a primary mechanism of the East Asian summer monsoon (EASM) is the fluid dynamical response to the Tibetan Plateau (TP), that is, orographically forced Rossby waves. With this mechanism in mind, this study explores how changes in the location of the TP affect the EASM precipitation. Specifically, the TP is moved in the four cardinal directions using idealized general circulation model experiments. The results show that the monsoon aspects are entirely determined by the location of the TP. Interestingly, the strongest EASM precipitation occurs when the TP is situated near its current location, a situation in which downstream southerlies are well developed from the surface to aloft. However, southerlies into the EASM region weaken as the TP moves, which in turn reduces the precipitation. Nevertheless, as long as it moves in the east–west direction, the TP is likely to force the stationary waves that induce precipitation over the mid-latitudes (not necessarily over East Asia). In contrast, moving the TP well north of its original location does not induce strong monsoon flows over the EASM region, resulting in the driest case. Meanwhile, although the southward movement of the TP triggers downstream southerlies to some extent, it does not lead to an increase in the precipitation. Overall, these results show that the location of the TP is crucial in determining the EASM precipitation, and the latter is much more sensitive to the displacement of the TP in the meridional direction than in the zonal direction.


2021 ◽  
Author(s):  
Ambrogio Volonté ◽  
Reinhard Schiemann ◽  
Andrew Turner ◽  
Pier Luigi Vidale

<p>China receives most of its rainfall during the East Asian summer monsoon (EASM). The EASM is a complex, multi-phase and multi-scale phenomenon, influenced by both tropical and mid-latitude dynamics and by the presence of major orography, such as the Tibetan Plateau. The EASM front, displaying a steep gradient in equivalent potential temperature, neatly separates tropical and extratropical air masses as the monsoon marches northwards, particularly in the <em>Mei Yu</em> stage. Many questions are still open on the dynamics of EASM evolution. Recent work on the Indian monsoon has indicated a new approach, focusing on the interaction between competing air masses that shapes monsoon progression. Drawing from that approach, we apply Eulerian and Lagrangian methods to the ERA5 reanalysis dataset to provide a comprehensive study of the seasonal evolution of the EASM and of its front. </p><p>A new frontal detection algorithm is used to perform a front-centred analysis of EASM evolution, allowing to clearly identify and depict the four main stages of evolution of the EASM, in agreement with recent studies. The dynamics of interaction between monsoon and mid-latitude air masses at the EASM front are then investigated, highlighting the key tropical and extratropical processes, at both upper and lower levels. The sub-tropical westerly jet (STWJ) over east Asia has a primary role in controlling the strength and the poleward progression of the EASM front, in particular during <em>Mei Yu</em>. This upper-level mid-latitude forcing acts in conjunction with the low-level moist-air advection from the tropics, modulated by the seasonal cycle of the South Asian monsoon and by the location of the Western North Pacific subtropical high. The <em>Mei Yu</em> stage is distinguished by an especially clear interaction between tropical and extratropical air masses that converge at the EASM front, with the importance of remote moisture sources for the advection of moist tropical air also highlighted. Composites of the years with highest and lowest latitude of the EASM front at <em>Mei Yu</em> are also assessed, outlining the processes behind the interannual variability of the poleward progression of the EASM front. Their analysis reveals the influence of the STWJ on the strength of the mid-latitude flow impacting on the northern side of the EASM front. In turns, this affects the extent of the warm moist advection on the southern side and the distribution and intensity of resultant rainfall over China.</p><p>Thus, using a mix of diagnostics tools and methods of analysis, in this study we identify the key airmasses, and related processes, that characterise seasonal EASM progression and variability. Clarifying their roles and joint influences in the evolution of this complex, multi-scale and multi-stage phenomenon we also highlight the dynamics of the tropical-extratropical interaction that occurs at the front, particularly during its <em>Mei Yu</em> northward migration.</p>


2020 ◽  
Vol 33 (16) ◽  
pp. 6929-6944 ◽  
Author(s):  
Yu Gao ◽  
Zhengyu Liu ◽  
Zhengyao Lu

AbstractThe effect of ice sheet topography on the East Asian summer monsoon (EASM) during the Last Glacial Maximum is studied using CCSM3 in a hierarchy of model configurations. It is found that receding ice sheets result in a weakened EASM, with the reduced ice sheet thickness playing a major role. The lower ice sheet topography weakens the EASM through shifting the position of the midlatitude jet, and through altering Northern Hemisphere stationary waves. In the jet shifting mechanism, the lowering of ice sheets shifts the westerly jet northward and decreases the westerly jet over the subtropics in summer, which reduces the advection of dry enthalpy and in turn precipitation over the EASM region. In the stationary wave mechanism, the lowering of ice sheets induces an anomalous stationary wave train along the westerly waveguide that propagates into the EASM region, generating an equivalent-barotropic low response; this leads to reduced lower-tropospheric southerlies, which in turn reduces the dry enthalpy advection into East Asia, and hence the EASM precipitation.


2008 ◽  
Vol 4 (2) ◽  
pp. 79-90 ◽  
Author(s):  
◽  
A. Berger ◽  
E. Driesschaert ◽  
H. Goosse ◽  
M. F. Loutre ◽  
...  

Abstract. Deep-sea and ice-core records show that interglacial periods were overall less "warm" before about 420 000 years ago than after, with relatively higher ice volume and lower greenhouse gases concentration. This is particularly the case for the interglacial Marine Isotope Stage 13 which occurred about 500 000 years ago. However, by contrast, the loess and other proxy records from China suggest an exceptionally active East Asian summer monsoon during this interglacial. A three-dimension Earth system Model of Intermediate complexity was used to understand this seeming paradox. The astronomical forcing and the remnant ice sheets present in Eurasia and North America were taken into account in a series of sensitivity experiments. Expectedly, the seasonal contrast is larger and the East Asian summer monsoon is reinforced compared to Pre-Industrial time when Northern Hemisphere summer is at perihelion. Surprisingly, the presence of the Eurasian ice sheet was found to reinforce monsoon, too, through a south-eastwards perturbation planetary wave. The trajectory of this wave is influenced by the Tibetan plateau.


2014 ◽  
Vol 27 (8) ◽  
pp. 3052-3072 ◽  
Author(s):  
Jinqiang Chen ◽  
Simona Bordoni

Abstract This paper investigates the dynamical processes through which the Tibetan Plateau (TP) influences the East Asian summer monsoon (EASM) within the framework of the moist static energy (MSE) budget, using both observations and atmospheric general circulation model (AGCM) simulations. The focus is on the most prominent feature of the EASM, the so-called meiyu–baiu (MB), which is characterized by a well-defined, southwest–northeast elongated quasi-stationary rainfall band, spanning from eastern China to Japan and into the northwestern Pacific Ocean between mid-June and mid-July. Observational analyses of the MSE budget of the MB front indicate that horizontal advection of moist enthalpy, and primarily of dry enthalpy, sustains the front in a region of otherwise negative net energy input into the atmospheric column. A decomposition of the horizontal dry enthalpy advection into mean, transient, and stationary eddy fluxes identifies the longitudinal thermal gradient due to zonal asymmetries and the meridional stationary eddy velocity as the most influential factors determining the pattern of horizontal moist enthalpy advection. Numerical simulations in which the TP is either retained or removed show that the TP influences the stationary enthalpy flux, and hence the MB front, primarily by changing the meridional stationary eddy velocity, with reinforced southerly wind over the MB region and northerly wind to its north. Changes in the longitudinal thermal gradient are mainly confined to the near downstream of the TP, with the resulting changes in zonal warm air advection having a lesser impact on the rainfall in the extended MB region.


Sign in / Sign up

Export Citation Format

Share Document