Carbon balance of tropical peat ecosystems in Borneo

Author(s):  
Takashi Hirano

<p>Tropical peat swamp forest (PSF) is a unique ecosystem rich in carbon and water, which is widely distributed in Southeast Asia’s coastal lowlands, mainly in Borneo, Sumatra and Malay Peninsular. The ecosystem has accumulated a huge amount of organic carbon in peat soil over millennia under the condition of high groundwater level. However, PSF has been reduced and degraded by logging, drainage and burning mainly because of land conversion to oil palm and pulp wood plantations during the last two decades. Such human disturbances potentially increase carbon dioxide (CO<sub>2</sub>) emissions to the atmosphere through enhanced oxidative peat decomposition and the increased risk of peat fires. Thus, it is essentail to assess the current carbon status of tropical peatlands and quantify the effects of disturbance on the carbon balance to understand the role of tropical peatlands in the regional and global carbon balances. We have continuously measured ecosystem-scale eddy fluxes and soil fluxes of CO<sub>2</sub> and methane (CH<sub>4</sub>) in different tropical peat ecosystems, including a little drained PSF, a drained PSF, a burned ex-PSF and an oil palm plantation, in Central Kalimantan, Indonesia, and Sarawak, Malaysia, in Borneo. Based on the monitoring data, I’ll talk about the carbon balance of tropical peat ecosystems, such as its seasonal variation and its relationship with groundwwater level, and the effect of disturbance due to human activities and ENSO drought on the carbon flux and balance.</p>

2009 ◽  
Vol 4 (2) ◽  
pp. 123-130 ◽  
Author(s):  
Ch`ng Huck Ywih ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Ab. Majid ◽  
Mohamadu Boyie Jalloh

2021 ◽  
Vol 9 ◽  
Author(s):  
Erin Swails ◽  
Kristell Hergoualc’h ◽  
Louis Verchot ◽  
Nisa Novita ◽  
Deborah Lawrence

Land-use change in tropical peatlands substantially impacts peat emissions of methane (CH4) and nitrous oxide (N2O) in addition to emissions of carbon dioxide (CO2). However, assessments of full peat greenhouse gas (GHG) budgets are scarce and CH4 and N2O contributions remain highly uncertain. The objective of our research was to assess changes in peat GHG flux and budget associated with peat swamp forest disturbance and conversion to oil palm plantation and to evaluate drivers of variation in trace gas fluxes. Over a period of one and a half year, we monitored monthly CH4 and N2O fluxes together with environmental variables in three undrained peat swamp forests and three oil palm plantations on peat in Central Kalimantan. The forests included two primary forests and one 30-year-old secondary forest. We calculated the peat GHG budget in both ecosystems using soil respiration and litterfall rates measured concurrently with CH4 and N2O fluxes, site-specific soil respiration partitioning ratios, and literature-based values of root inputs and dissolved organic carbon export. Peat CH4 fluxes (kg CH4 ha−1 year−1) were insignificant in oil palm (0.3 ± 0.4) while emissions in forest were high (14.0 ± 2.8), and larger in wet than in dry months. N2O emissions (kg N2O ha−1 year−1) were highly variable spatially and temporally and similar across land-uses (5.0 ± 3.9 and 5.2 ± 3.7 in oil palm and forest). Temporal variation of CH4 was controlled by water table level and soil water-filled pore space in forest and oil palm, respectively. Monthly fluctuations of N2O were linked to water table level in forest. The peat GHG budget (Mg CO2 equivalent ha−1 year−1) in oil palm (31.7 ± 8.6) was nearly eight times the budget in forest (4.0 ± 4.8) owing mainly to decreased peat C inputs and increased peat C outputs. The GHG budget was also ten times higher in the secondary forest (10.2 ± 4.5) than in the primary forests (0.9 ± 3.9) on the account of a larger peat C budget and N2O emission rate. In oil palm 96% of emissions were released as CO2 whereas in forest CH4 and N2O together contributed 65% to the budget. Our study highlights the disastrous atmospheric impact associated with forest degradation and conversion to oil palm in tropical peatlands and stresses the need to investigate GHG fluxes in disturbed undrained lands.


1999 ◽  
Vol 37 (2) ◽  
pp. 115-128 ◽  
Author(s):  
Satoru SUZUKI ◽  
Tomoyasu ISHIDA ◽  
Toshihide NAGANO ◽  
Surin WAIJAROEN

Sign in / Sign up

Export Citation Format

Share Document