Deep Learning for Drought and Vegetation Health Modelling: Demonstrating the utility of an Entity-Aware LSTM

Author(s):  
Thomas Lees ◽  
Gabriel Tseng ◽  
Steven Reece ◽  
Simon Dadson

<p>Tools from the field of deep learning are being used more widely in hydrological science. The potential of these methods lies in the ability to generate interpretable and physically realistic forecasts directly from data, by utilising specific neural network architectures. </p><p>This approach offers two advantages which complement physically-based models. First, the interpretations can be checked against our physical understanding to ensure that where deep learning models produce accurate forecasts they do so for physically-defensible reasons. Second, in domains where our physical understanding is limited, data-driven methods offer an opportunity to direct attention towards physical explanations that are consistent with data. Both are important in demonstrating the utility of deep learning as a tool in hydrological science.</p><p>This work uses an Entity Aware LSTM (EALSTM; cf. Kratzert et al., 2019) to predict a satellite-derived vegetation health metric, the Vegetation Condition Index (VCI). We use a variety of data sources including reanalysis data (ERA-5), satellite products (NOAA Vegetation Condition Index) and blended products (CHIRPS precipitation). The fundamental approach is to determine how well we can forecast vegetation health from hydro-meteorological variables. </p><p>In order to demonstrate the value of this method we undertook a series of experiments using observed data from Kenya to evaluate model performance. Kenya has experienced a number of devastating droughts in recent decades. Since the 1970s there have been more than 10 drought events in Kenya, including droughts in 2010-2011 and 2016 (Haile et al 2019). The National Drought Monitoring Authority (NDMA) use satellite-derived vegetation health to determine the drought status of regions in Kenya.</p><p>First, we compared our results to other statistical methods and a persistence-based baseline. Using RMSE and R-squared we demonstrate that the EALSTM is able to predict vegetation health with an improved accuracy compared with other approaches. We have also assessed the ability of the EALSTM to predict poor vegetation health conditions. While better than the persistence baseline the performance on the tails of the distribution requires further attention.</p><p>Second, we test the ability of our model to generalise results. We do this by training only with subsets of the data. This tests our model’s ability to make accurate forecasts when the model has not seen examples of the conditions we are predicting. Finally, we explore how we can use the EALSTM to better understand the physical realism of relations between hydro-climatic variables embedded within the trained neural network. </p><p> </p><p>References:</p><p>Gebremeskel, G., Tang, Q., Sun, S., Huang, Z., Zhang, X., & Liu, X. (2019, June 1). Droughts in East Africa: Causes, impacts and resilience. Earth-Science Reviews. Elsevier B.V. https://doi.org/10.1016/j.earscirev.2019.04.015</p><p>Klisch, A., & Atzberger, C. (2016). Operational drought monitoring in Kenya using MODIS NDVI time series. Remote Sensing, 8(4). https://doi.org/10.3390/rs8040267</p><p>Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., & Nearing, G. (2019). Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences, 23(12), 5089–5110. https://doi.org/10.5194/hess-23-5089-2019</p><p>Github Repository: https://github.com/esowc/ml_drought</p>

2016 ◽  
Vol 8 (3) ◽  
pp. 224 ◽  
Author(s):  
Wenzhe Jiao ◽  
Lifu Zhang ◽  
Qing Chang ◽  
Dongjie Fu ◽  
Yi Cen ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
pp. 1-9
Author(s):  
Eggy Arya ◽  
Yuliana Safitri ◽  
Fitrah Andika Riyadhno

Kekeringan lahan yang terjadi saat musim kemarau memberikan dampak buruk bagi vegetasi, salah satunya tanah Gambut sangat sensitif terhadap kenaikan suhu menimbulkan kebakaran hutan. Kota Dumai menjadi salah satu daerah yang sering mengalami kebakaran hutan dan lahan, efek terjadi kebakaran  ini menjadikan lahan tersebut memiliki kualitas yang menurun meliputi fisika, kimia, dan adanya erosi  tanah. Dalam tulisan  ini, kami memantau adanya peningkatan dan penuruan dalam beberapa kategori kekeringan lahan. Adapun parameter yang digunakan seperti vegetation health index (VHI), vegetation condition index (VCI), dan temperature condition index (TCI) pada tahun 2013 dan tahun 2018. Hasil penelitian menjelaskan wilayah kekeringan mengalami kenaikan total selama periode pengamatan sebesar 23.119 hektar lahan, dengan kategori tanpa kekeringan terjadi penurunan seluas 23.119 ha, kemudian kategori kekeringan ringan  terjadi peningkatan seluas19.510 ha, selanjutnya kategori kekeringan sedang terjadi peningkatan seluas 13.444 ha, lalu kategori kekeringan parah terjadi penurunan seluas 9.163 ha, dan kekeringan ekstrim  mengalami penurunan seluas 672 ha. hal ini sejalan dengan terjadinya kenaikan pada suhu tahun 2013 mencapai 38 ºC  kemudian mengalami peningkatan menjadi 47,53ºC di tahun 2018 yang sedang mengalami kebakaran hutan dan lahan


2021 ◽  
Vol 13 (16) ◽  
pp. 3294
Author(s):  
Muhammad Shahzaman ◽  
Weijun Zhu ◽  
Irfan Ullah ◽  
Farhan Mustafa ◽  
Muhammad Bilal ◽  
...  

The substantial reliance of South Asia (SA) to rain-based agriculture makes the region susceptible to food scarcity due to droughts. Previously, most research on SA has emphasized the meteorological aspects with little consideration of agrarian drought impressions. The insufficient amount of in situ precipitation data across SA has also hindered thorough investigation in the agriculture sector. In recent times, models, satellite remote sensing, and reanalysis products have increased the amount of data. Hence, soil moisture, precipitation, terrestrial water storage (TWS), and vegetation condition index (VCI) products have been employed to illustrate SA droughts from 1982 to 2019 using a standardized index/anomaly approach. Besides, the relationships of these products towards crop production are evaluated using the annual national production of barley, maize, rice, and wheat by computing the yield anomaly index (YAI). Our findings indicate that MERRA-2, CPC, FLDAS (soil moisture), GPCC, and CHIRPS (precipitation) are alike and constant over the entire four regions of South Asia (northwest, southwest, northeast, and southeast). On the other hand, GLDAS and ERA5 remain poor when compared to other soil moisture products and identified drought conditions in regions one (northwest) and three (northeast). Likewise, TWS products such as MERRA-2 TWS and GRACE TWS (2002–2014) followed the patterns of ERA5 and GLDAS and presented divergent and inconsistent drought patterns. Furthermore, the vegetation condition index (VCI) remained less responsive in regions three (northeast) and four (southeast) only. Based on annual crop production data, MERRA-2, CPC, FLDAS, GPCC, and CHIRPS performed fairly well and indicated stronger and more significant associations (0.80 to 0.96) when compared to others. Thus, the current outcomes are imperative for gauging the deficient amount of data in the SA region, as they provide substitutes for agricultural drought monitoring.


Sign in / Sign up

Export Citation Format

Share Document