Lithospheric-scale anisotropies control first-order stress orientation during Cretaceous-Cenozoic plate kinematics in Western-Central Europe

Author(s):  
Tobias Stephan ◽  
Uwe Kroner ◽  
Saskia Köhler ◽  
Daniel Koehn ◽  
Wolfgang Bauer ◽  
...  

<p>Late Mesozoic-Cenozoic plate convergence led to widespread intraplate deformation in Western-Central Europe during the Late Cretaceous-Paleogene and the Miocene until today reflecting the collision of Eurasia with Iberia-Africa and Adria, respectively. The resulting complex deformation pattern inside the plate boundary zone contrasts with a rather uniform orientation adjacent to the north. Although there is broad consensus that the orientation of the first-order stress is controlled by plate kinematics, there is no sufficient explanation for the variation of the stress field across the plate boundary. We model plate kinematic trajectories and analyze the spatial distribution of paleostress data from fault-slip inversion and tectonic stylolites. The comparison reveals the coexistence of two contrasting stress provinces in Europe throughout the Late Mesozoic-Cenozoic. Inside the diffuse plate boundary zone, trajectories of plate motion fit deformation patterns. Outside of that zone, however, there is significant deviation. Here deformation is mainly accommodated by the reactivation of Paleozoic shear zones. Thus, we argue that lithospheric-scale structural inheritance from the Pangea assemblage controls the stress-strain pattern of Western-Central Europe between the active plate boundary zone and the East European Craton since the Late Mesozoic.</p>

2003 ◽  
Vol 30 (14) ◽  
Author(s):  
Stéphane Mazzotti ◽  
Roy D. Hyndman ◽  
Paul Flück ◽  
Alex J. Smith ◽  
Michael Schmidt

The subduction zone under the east coast of the North Island of New Zealand comprises, from east to west, a frontal wedge, a fore-arc basin, uplifted basement forming the arc and the Central Volcanic Region. Reconstructions of the plate boundary zone for the Cainozoic from seafloor spreading data require the fore-arc basin to have rotated through 60° in the last 20 Ma which is confirmed by palaeomagnetic declination studies. Estimates of shear strain from geodetic data show that the fore-arc basin is rotating today and that it is under extension in the direction normal to the trend of the plate boundary zone. The extension is apparently achieved by normal faulting. Estimates of the amount of sediments accreted to the subduction zone exceed the volume of the frontal wedge: underplating by the excess sediments is suggested to be the cause of late Quaternary uplift of the fore-arc basin. Low-temperature—high-pressure metamorphism may therefore be occurring at depth on the east coast and high-temperature—low-pressure metamorphism is probable in the Central Volcanic Region. The North Island of New Zealand is therefore a likely setting for a paired metamorphic belt in the making.


Geology ◽  
2004 ◽  
Vol 32 (3) ◽  
pp. 237 ◽  
Author(s):  
Timothy J. Henstock ◽  
Timothy A. Minshull

1997 ◽  
Vol 102 (B5) ◽  
pp. 10055-10082 ◽  
Author(s):  
Mark B. Gordon ◽  
Paul Mann ◽  
Dámaso Cáceres ◽  
Raúl Flores

Sign in / Sign up

Export Citation Format

Share Document