Geodetic strain and the deformational history of the North Island of New Zealand during the late Cainozoic

The subduction zone under the east coast of the North Island of New Zealand comprises, from east to west, a frontal wedge, a fore-arc basin, uplifted basement forming the arc and the Central Volcanic Region. Reconstructions of the plate boundary zone for the Cainozoic from seafloor spreading data require the fore-arc basin to have rotated through 60° in the last 20 Ma which is confirmed by palaeomagnetic declination studies. Estimates of shear strain from geodetic data show that the fore-arc basin is rotating today and that it is under extension in the direction normal to the trend of the plate boundary zone. The extension is apparently achieved by normal faulting. Estimates of the amount of sediments accreted to the subduction zone exceed the volume of the frontal wedge: underplating by the excess sediments is suggested to be the cause of late Quaternary uplift of the fore-arc basin. Low-temperature—high-pressure metamorphism may therefore be occurring at depth on the east coast and high-temperature—low-pressure metamorphism is probable in the Central Volcanic Region. The North Island of New Zealand is therefore a likely setting for a paired metamorphic belt in the making.

2021 ◽  
Author(s):  
Bryant Chow

<p><b>Seismic tomography is a powerful tool for understanding Earth structure. In New Zealand, velocity models derived using ray-based tomography have been used extensively to characterize the complex plate boundary between the Australian and Pacific plates. Advances in computational capabilities now allow us to improve these velocity models using adjoint tomography, an imaging method which minimizes differences between observed and simulated seismic waveforms. We undertake the first application of adjoint tomography in New Zealand to improve a ray-based New Zealand velocity model containing the Hikurangi subduction zone and the North Island of New Zealand.</b></p> <p>In support of this work we deployed the Broadband East Coast Network (BEACON), a temporary seismic network aimed at improving coverage of the New Zealand permanent network, along the east coast of the North Island. We concurrently develop an automated, open-source workflow for full-waveform inversion using spectral element and adjoint methods. We employ this tool to assess a candidate velocity model’s suitability for adjoint tomography. Using a 3D ray-based traveltime tomography model of New Zealand, we generate synthetic seismic waveforms for more than 10 000 source–receiver pairs and evaluate waveform misfits. We subsequently perform synthetic checkerboard inversions with a realistic New Zealand source–receiver distribution. Reasonable systematic time shifts and satisfactory checkerboard resolution in synthetic inversions indicate that the candidate model is appropriate as an initial model for adjoint tomography. This assessment also demonstrates the relative ease of use and reliability of the automated tools.</p> <p>We then undertake a large-scale adjoint tomography inversion for the North Island of New Zealand using up to 1 800 unique source–receiver pairs to fit waveforms with periods 4–30 s, relating to minimum waveform sensitivities on the order of 5 km. Overall, 60 geographically well-distributed earthquakes and as many as 88 broadband station locations are included. Using a nonlinear optimization algorithm, we undertake 28 model updates of Vp and Vs over six distinct inversion legs which progressively increase resolution. The total inversion incurred a computational cost of approximately 500 000 CPU-hours. The overall time shift between observed and synthetic seismograms is reduced, and updated velocities show as much as ±30% change with respect to initial values. A formal resolution analysis using point spread tests highlights that velocity changes are strongly resolved onland and directly offshore, at depths above 30 km, with low-amplitude changes (> 1%) observed down to 100 km depth. The most striking velocity changes coincide with areas related to the active Hikurangi subduction zone.</p> <p>We interpret the updated velocity model in terms of New Zealand tectonics and geology, and observe good agreement with known basement terranes, and major structural elements such as faults, sedimentary basins, broad-scale subduction related features. We recover increased spatial heterogeneity in seismic velocities along the strike of the Hikurangi subduction zone with respect to the initial model. Below the East Coast, we interpret two localized high-velocity anomalies as previously unidentified subducted seamounts. We corroborate this interpretation with other work, and discuss the implications of deeply subducted seamounts on slip behavior along the Hikurangi margin. In the Cook Strait we observe a low-velocity zone that we interpret as a deep sedimentary basin. Strong velocity gradients bounding this low-velocity zone support hypotheses of a structural boundary here separating the North and South Islands of New Zealand. In the central North Island, low-velocity anomalies are linked to surface geology, and we relate seismic velocities at depth to crustal magmatic activity below the Taupo Volcanic Zone.</p> <p>This new velocity model provides more accurate synthetic seismograms and additional constraints on enigmatic tectonic processes related to the North Island of New Zealand. Both the velocity model itself, and the underpinning methodological contributions, improve our ever-expanding understanding of the North Island of New Zealand, the Hikurangi subduction zone, and the broader Australian-Pacific plate boundary.</p>


2021 ◽  
Author(s):  
Bryant Chow

<p><b>Seismic tomography is a powerful tool for understanding Earth structure. In New Zealand, velocity models derived using ray-based tomography have been used extensively to characterize the complex plate boundary between the Australian and Pacific plates. Advances in computational capabilities now allow us to improve these velocity models using adjoint tomography, an imaging method which minimizes differences between observed and simulated seismic waveforms. We undertake the first application of adjoint tomography in New Zealand to improve a ray-based New Zealand velocity model containing the Hikurangi subduction zone and the North Island of New Zealand.</b></p> <p>In support of this work we deployed the Broadband East Coast Network (BEACON), a temporary seismic network aimed at improving coverage of the New Zealand permanent network, along the east coast of the North Island. We concurrently develop an automated, open-source workflow for full-waveform inversion using spectral element and adjoint methods. We employ this tool to assess a candidate velocity model’s suitability for adjoint tomography. Using a 3D ray-based traveltime tomography model of New Zealand, we generate synthetic seismic waveforms for more than 10 000 source–receiver pairs and evaluate waveform misfits. We subsequently perform synthetic checkerboard inversions with a realistic New Zealand source–receiver distribution. Reasonable systematic time shifts and satisfactory checkerboard resolution in synthetic inversions indicate that the candidate model is appropriate as an initial model for adjoint tomography. This assessment also demonstrates the relative ease of use and reliability of the automated tools.</p> <p>We then undertake a large-scale adjoint tomography inversion for the North Island of New Zealand using up to 1 800 unique source–receiver pairs to fit waveforms with periods 4–30 s, relating to minimum waveform sensitivities on the order of 5 km. Overall, 60 geographically well-distributed earthquakes and as many as 88 broadband station locations are included. Using a nonlinear optimization algorithm, we undertake 28 model updates of Vp and Vs over six distinct inversion legs which progressively increase resolution. The total inversion incurred a computational cost of approximately 500 000 CPU-hours. The overall time shift between observed and synthetic seismograms is reduced, and updated velocities show as much as ±30% change with respect to initial values. A formal resolution analysis using point spread tests highlights that velocity changes are strongly resolved onland and directly offshore, at depths above 30 km, with low-amplitude changes (> 1%) observed down to 100 km depth. The most striking velocity changes coincide with areas related to the active Hikurangi subduction zone.</p> <p>We interpret the updated velocity model in terms of New Zealand tectonics and geology, and observe good agreement with known basement terranes, and major structural elements such as faults, sedimentary basins, broad-scale subduction related features. We recover increased spatial heterogeneity in seismic velocities along the strike of the Hikurangi subduction zone with respect to the initial model. Below the East Coast, we interpret two localized high-velocity anomalies as previously unidentified subducted seamounts. We corroborate this interpretation with other work, and discuss the implications of deeply subducted seamounts on slip behavior along the Hikurangi margin. In the Cook Strait we observe a low-velocity zone that we interpret as a deep sedimentary basin. Strong velocity gradients bounding this low-velocity zone support hypotheses of a structural boundary here separating the North and South Islands of New Zealand. In the central North Island, low-velocity anomalies are linked to surface geology, and we relate seismic velocities at depth to crustal magmatic activity below the Taupo Volcanic Zone.</p> <p>This new velocity model provides more accurate synthetic seismograms and additional constraints on enigmatic tectonic processes related to the North Island of New Zealand. Both the velocity model itself, and the underpinning methodological contributions, improve our ever-expanding understanding of the North Island of New Zealand, the Hikurangi subduction zone, and the broader Australian-Pacific plate boundary.</p>


2012 ◽  
Vol 303-306 ◽  
pp. 154-171 ◽  
Author(s):  
T. Pichot ◽  
M. Patriat ◽  
G.K. Westbrook ◽  
T. Nalpas ◽  
M.A. Gutscher ◽  
...  

2008 ◽  
Vol 48 (1) ◽  
pp. 53 ◽  
Author(s):  
Chris Uruski ◽  
Callum Kennedy ◽  
Rupert Sutherland ◽  
Vaughan Stagpoole ◽  
Stuart Henrys

The East Coast of North Island, New Zealand, is the site of subduction of the Pacific below the Australian plate, and, consequently, much of the basin is highly deformed. An exception is the Raukumara Sub-basin, which forms the northern end of the East Coast Basin and is relatively undeformed. It occupies a marine plain that extends to the north-northeast from the northern coast of the Raukumara Peninsula, reaching water depths of about 3,000 m, although much of the sub-basin lies within the 2,000 m isobath. The sub-basin is about 100 km across and has a roughly triangular plan, bounded by an east-west fault system in the south. It extends about 300 km to the northeast and is bounded to the east by the East Cape subduction ridge and to the west by the volcanic Kermadec Ridge. The northern seismic lines reveal a thickness of around 8 km increasing to 12–13 km in the south. Its stratigraphy consists of a fairly uniformly bedded basal section and an upper, more variable unit separated by a wedge of chaotically bedded material. In the absence of direct evidence from wells and samples, analogies are drawn with onshore geology, where older marine Cretaceous and Paleogene units are separated from a Neogene succession by an allochthonous series of thrust slices emplaced around the time of initiation of the modern plate boundary. The Raukumara Sub-basin is not easily classified. Its location is apparently that of a fore-arc basin along an ocean-to-ocean collision zone, although its sedimentary fill must have been derived chiefly from erosion of the New Zealand land mass. Its relative lack of deformation introduces questions about basin formation and petroleum potential. Although no commercial discoveries have been made in the East Coast Basin, known source rocks are of marine origin and are commonly oil prone, so there is good potential for oil as well as gas in the basin. New seismic data confirm the extent of the sub-basin and its considerable sedimentary thickness. The presence of potential trapping structures and direct hydrocarbon indicators suggest that the Raukumara Sub-basin may contain large volumes of oil and gas.


1997 ◽  
Vol 102 (B5) ◽  
pp. 10055-10082 ◽  
Author(s):  
Mark B. Gordon ◽  
Paul Mann ◽  
Dámaso Cáceres ◽  
Raúl Flores

Sign in / Sign up

Export Citation Format

Share Document