Palaeoenvironmental significance of a large-scale buried ice-marginal landsystem, Skeiðarársandur, SE Iceland

Author(s):  
Devin Harrison ◽  
Neil Ross ◽  
Andrew J. Russell ◽  
Stuart J. Jones

<p>The sedimentary record of Icelandic ice-contact environments provides valuable information about glacier margin dynamics and position, relative sea-level, and the geomorphic processes that drive the evolution of proglacial environments. This important archive has been little exploited, however, with most glacier and sea level reconstructions based on limited sedimentary exposures and surface geomorphic evidence. Although geophysical surveys of Icelandic sandur have been conducted, they have often been of limited spatial scale and focus on specific landforms. We report an extensive (42 km of data within a 24 km<sup>2 </sup>study area) and detailed (reflections recorded at depths of up to 100 m) low-frequency (40 and 100 MHz) Ground-Penetrating Radar (GPR) survey of the Sandgígur moraine complex, SE Iceland. This transforms our understanding of this landform, with implications for the Holocene glacial history and evolution of Skeiðarársandur and SE Iceland.</p><p>The Sandgígur moraines are located on Skeiðarársandur, SE Iceland, down-sandur of large Little Ice Age-moraines of Skeiðarárjökull. They have a relatively subtle surface geomorphic expression (typically 7 m high and 125 m wide), and knowledge of their formation is limited, with no dating control on their age or detailed geomorphic or sedimentological investigations. GPR-data reveals reflections interpreted as large progradational foresets (dip angle: 2.19° – 6.87°) beneath the morainic structure (depth of 100 m). These features are consistent with a sub-aqueous depositional environment before moraine formation, providing potential indications of past relative sea-level limits. GPR profiles in the vicinity of the Sandgígur moraines reveal a much larger (67 m high and 1.25 km wide) and extensive buried moraine complex than that suggested by surface morphology. Indicating that the moraine was a major Holocene ice margin of Skeiðarárjökull. The buried Sandgígur moraine ridge is comprised of a unit of chaotic folded reflections adjacent to a unit of parallel, down-sandur dipping reflections (dip angle: 1.29° – 2.27°) indicative of an ice-contact or end-moraine fan. Possible evidence of buried ice at depth is also present within radargrams surrounding the moraine ridges. Sediment above the morainic bounding surface is interpreted to be dominated by glaciofluvial deposits with an estimated sediment volume of 1.04 km<sup>3</sup> over the 24 km<sup>2</sup> study area. Potential moraine breaches, possibly caused by high magnitude jökulhlaups (glacier outburst floods) are coincident within the GPR data and the surface geomorphology.</p><p>We combine GPR-derived subsurface architecture with the current surface morphology to develop a conceptual model detailing the geomorphic evolution of the moraines and surrounding region, from pre-moraine morphology, to their formation and burial, resulting in the present-day morphology. These results provide new insights into the Holocene to present-day glacial history of Skeiðarárjökull and the controls on sedimentation responsible for the evolution of Skeiðarársandur, with implications for the formation of sandar environments and the Holocene environmental history of SE Iceland.</p>

2020 ◽  
Author(s):  
Devin Harrison ◽  
Neil Ross ◽  
Andrew Russell ◽  
Stuart Jones

<p>The sedimentary record of Icelandic ice-contact environments provides valuable information about glacier margin dynamics and position, relative sea-level and the geomorphic processes driving proglacial environments. This important archive has been little exploited, however, with most glacier and sea level reconstructions based on limited sedimentary exposures and surface geomorphic evidence. Although geophysical surveys of Icelandic sandur have been conducted, they have often been of limited spatial scale and focused on specific landforms. Here, we report an extensive (42 km of data) detailed low-frequency (40 and 100 MHz) ground-penetrating radar (GPR) survey of the Sandgigúr moraine complex, SE Iceland, which transforms our understanding of this landform, with implications for the Holocene history of Skeiðarársandur and SE Iceland.</p><p>The Sandgigúr moraines are located on Skeiðarársandur, SE Iceland, down-sandur of large Little Ice Age-moraines of Skeiðarárjökull. They have a relatively subtle surface geomorphic expression (typically 125 m wide and 7 m high), and knowledge of their formation is limited, with no dating control on their age or detailed geomorphic or sedimentological investigations.  GPR investigations reveal a much larger (60 m high and 1200 m wide) and extensive buried moraine complex than that suggested by surface morphology, suggesting that the moraine was a major Holocene ice margin of Skeiðarárjökull.</p><p>GPR reflections interpreted as large progradational foresets (up to 20 m in height) beneath the morainic structure are consistent with a sub-aqueous depositional environment before moraine formation, providing potential controls on former sea-level.  The GPR data also provide information on the internal structure of the moraine, with evidence for glacitectonism within the proximal side of the moraine, multiphase moraine formation, and possible buried ice at depth. A 30-40 m thick package of down-sandur dipping GPR reflections drape the leeside of the moraine, evidencing glaciofluvial deposition during and after moraine development. Potential moraine breaches, possibly caused by glaciofluvial (e.g. jökulhlaup) events, are also apparent within the GPR data and the surface geomorphology.</p><p>We combine GPR-derived subsurface architecture with the current surface morphology to develop a conceptual model detailing the geomorphic evolution of the moraines and surrounding region, from pre-moraine morphology, to their formation and breaching, resulting in the subsequent present-day morphology. These results provide new insights into the Holocene to present-day evolution of Skeiðarársandur and Skeiðarárjökull, with implications for reconstructions of the Holocene environmental history of SE Iceland.</p>


1993 ◽  
Vol 30 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Philip R. Hill ◽  
Arnaud Héquette ◽  
Marie-Hélène Ruz

New radiocarbon ages pertaining to the Holocene sea-level history of the Canadian Beaufort shelf are presented. The ages were obtained on samples of freshwater and tidal-marsh peat beds from offshore boreholes and shallow cores in the coastal zone and on molluscs and a single piece of wood deposited in foraminifera-bearing marine sediments. Although none of the samples record directly the position of relative sea level, the suite of ages constrains the regional curve sufficiently to suggest a faster rate of mid Holocene sea level rise (7–14 mm/a) than previously thought. The rate of relative rise slowed markedly in the last 3000 years, approaching the present at a maximum probable rate of 2.5 mm/a.


A biostratigraphic study, investigating the interleaved Flandrian biogenic and inorganic deposits of the lower Thames Estuary, has been carried out between central London and the Isle of Grain. The vegetational and environmental history, showing the relation of the biogenic deposits to former sea level has been deduced from pollen, diatom and other microfossil studies. Radiocarbon dating has been used to establish an objective chronology. From this evidence the height of relative sea level movements, seen in marine transgression and regression surfaces, have been determined. These are plotted against time to show the rate of relative sea level change and subsidence trends for the Thames Estuary and southern England. Diatom studies show the early importance of marine and brackish water influences, at the beginning of Flandrian sedimentation in the Thames. Pollen and macrofossil analyses demonstrate the strong local effects of the saltmarsh and fen environment upon the vegetational history. The rise of Alms pollen is seen to occur before 8100 years b.p ., probably reflecting local physiographic conditions and valley flooding consequent upon the rising sea level. Elements of the regional vegetation development are recorded however, with the Ulmus and Tilia pollen declines shown. Five regression phases (Tilbury I-V), represented by the biogenic deposits and four marine transgressions (Thames I-IV), together with the possible existence of a fifth (Thames V), are recognized. The relative sea level for mean high water mark of spring tides (m.h.w.s.t.) is shown to rise at about 8500 b.p . from —26.5 m o.d . to above present Ordnance Datum (Newlyn) by about 1750 years b.p . Relative sea level curves for the Thames during Flandrian times correlate well with the form and rate of relative sea level changes shown for northwest Europe. Plotting these graphs against each other has allowed subsidence trends to be shown. Within the Thames, possible differential downwarping of approximately 1.5 m has been identified between Crossness and Tilbury for the Flandrian. The regional trends of west to east and north to south downwarping are supported. The amount of subsidence for southeast England, formerly given as 6.1 m since 6500 b.p ., is not confirmed. The figure for the Thames area relative to the Bristol Channel lies closer to 2-3 m since 7000 b.p., although rates of downwarping vary with the type of environment studied, making generalizations tenuous. Sea level only shows relative subsidence trends and is not as yet seen to provide an accurate fixed datum from which one can give precise figures for land subsidence.


2017 ◽  
Vol 53 ◽  
pp. 285-300
Author(s):  
Roger LeBaron Hooke ◽  
Paul R. Hanson

Between ~20 and 15 ka the Laurentide Ice Sheet retreated from the edge of the continental shelf, ἀrst to the Maine coast and then across Maine to the northern reaches of the Penobscot Lowland. The Lowland, being isostatically depressed, was inundated by the sea. As ice then retreated into Maine’s western mountains, valleys through the mountains became estuaries. In the estuary now occupied by the Penobscot River’s East Branch, ten ice-marginal deltas were built during pauses in this part of the retreat. By 14 ka the ice had retreated far enough to expose land in the valley bottom between the ice front and the sea, and the Penobscot River was (re)born. This occurred near the present conᴀuence of the Seboeis River and the East Branch. The river gradually extended itself northward as the ice retreated and southward as relative sea level fell. Braidplains were formed and incised, leaving terraces. High initial discharges eroded the eastern ᴀanks of the esker and deltas, redepositing silt, sand, and gravel all the way to the present head of Penobscot Bay. By ~10 ka the discharge had decreased, the river was adjusting to on-going differential isostatic rebound, and finer sediment was accumulating, forming the present floodplain. 


2011 ◽  
Vol 26 (4) ◽  
pp. 353-361 ◽  
Author(s):  
Ole Bennike ◽  
Bernd Wagner ◽  
Andreas Richter

2017 ◽  
Vol 54 (11) ◽  
pp. 1153-1164 ◽  
Author(s):  
B.H. Luckman ◽  
M.H. Masiokas ◽  
K. Nicolussi

As glaciers in the Canadian Rockies recede, glacier forefields continue to yield subfossil wood from sites overridden by these glaciers during the Holocene. Robson Glacier in British Columbia formerly extended below tree line, and recession over the last century has progressively revealed a number of buried forest sites that are providing one of the more complete records of glacier history in the Canadian Rockies during the latter half of the Holocene. The glacier was advancing ca. 5.5 km upvalley of the Little Ice Age terminus ca. 5.26 cal ka BP, at sites ca. 2 km upvalley ca. 4.02 cal ka BP and ca. 3.55 cal ka BP, and 0.5–1 km upvalley between 1140 and 1350 A.D. There is also limited evidence based on detrital wood of an additional period of glacier advance ca. 3.24 cal ka BP. This record is more similar to glacier histories further west in British Columbia than elsewhere in the Rockies and provides the first evidence for a post-Hypsithermal glacier advance at ca. 5.26 cal ka BP in the Rockies. The utilization of the wiggle-matching approach using multiple 14C dates from sample locations determined by dendrochronological analyses enabled the recognition of 14C outliers and an increase in the precision and accuracy of the dating of glacier advances.


Sign in / Sign up

Export Citation Format

Share Document