canadian rockies
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 22)

H-INDEX

25
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Kristina Seftigen ◽  
Marina V. Fonti ◽  
Brian Luckman ◽  
Miloš Rydval ◽  
Petter Stridbeck ◽  
...  

2021 ◽  
Author(s):  
Dhiraj Pradhananga ◽  
John W. Pomeroy

Abstract. Mountain snow and ice greatly influence the hydrological cycle of alpine regions by regulating both the quantity and seasonal variations of water availability downstream. This study considers the combined impacts of climate and glaciers changes due to recession on the hydrology and water balance of two high-elevation basins in the Canadian Rockies. A distributed, physically based, uncalibrated glacier hydrology model developed in the Cold Regions Hydrological Modelling platform (CRHM) was used to simulate the glacier mass balance and basin hydrology of Peyto and Athabasca Glacier basins in Alberta. Bias-corrected reanalysis data were used to drive the model. The model calculates the water balance of a glacierized basin, influenced by the surface energy and mass balance, and considering redistribution of snow by wind and avalanches. It was set up using hydrological response units based on elevation bands, surface slope and aspect, as well as changing land cover. Aerial photos, satellite images and Digital Elevation Models (DEM) were assimilated to represent the changing configurations of glacier area and the exposure of ice and firn. Observations of glacier mass balance, snow and glacier ice surface elevation changes at glacier and alpine tundra meteorological stations and streamflow discharge at the glacier outlets were used to evaluate the model performance. Model results indicated that both basins have undergone continuous glacier loss over the last three to five decades, leading to a 6–31 % reduction in glacierized area, a 78–109 % increase in ice exposure, and changes to the elevation and slope of the glacier surfaces. Diurnal temperature ranges are increasing, mainly due to increasing summer maximum daily temperatures. Annual precipitation is not changing much, but rainfall ratios are increasing. Basin hydrology was simulated over two periods, 1965–1975 and 2008–2018, using observed glacier configurations. The results show that changes in both climate and glacier configuration caused changes in melt rates and runoff, and a shift of peak flows from August to July. Glacier melt contributions increased from 27–61 % to 43–59 % of annual discharges. Recent discharges were 3–19 % higher than in the 1960s and 1970s. The results suggest that increased exposure of glacier ice and lower surface elevation due to glacier thinning were less influential in increasing streamflow than climate warming. Streamflow from these glaciers continues to increase.


2021 ◽  
Vol 13 (6) ◽  
pp. 2875-2894
Author(s):  
Dhiraj Pradhananga ◽  
John W. Pomeroy ◽  
Caroline Aubry-Wake ◽  
D. Scott Munro ◽  
Joseph Shea ◽  
...  

Abstract. This paper presents hydrometeorological, glaciological and geospatial data from the Peyto Glacier Research Basin (PGRB) in the Canadian Rockies. Peyto Glacier has been of interest to glaciological and hydrological researchers since the 1960s, when it was chosen as one of five glacier basins in Canada for the study of mass and water balance during the International Hydrological Decade (IHD, 1965–1974). Intensive studies of the glacier and observations of the glacier mass balance continued after the IHD, when the initial seasonal meteorological stations were discontinued, then restarted as continuous stations in the late 1980s. The corresponding hydrometric observations were discontinued in 1977 and restarted in 2013. Datasets presented in this paper include high-resolution, co-registered digital elevation models (DEMs) derived from original air photos and lidar surveys; hourly off-glacier meteorological data recorded from 1987 to the present; precipitation data from the nearby Bow Summit weather station; and long-term hydrological and glaciological model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate change and variability in the basin and understanding the hydrological responses of the basin to both glacier and climate change. The comprehensive dataset for the PGRB is a valuable and exceptionally long-standing testament to the impacts of climate change on the cryosphere in the high-mountain environment. The dataset is publicly available from Federated Research Data Repository at https://doi.org/10.20383/101.0259 (Pradhananga et al., 2020).


2021 ◽  
Vol 13 (3) ◽  
pp. 1233-1249
Author(s):  
Julie M. Thériault ◽  
Stephen J. Déry ◽  
John W. Pomeroy ◽  
Hilary M. Smith ◽  
Juris Almonte ◽  
...  

Abstract. The continental divide along the spine of the Canadian Rockies in southwestern Canada is a critical headwater region for hydrological drainages to the Pacific, Arctic, and Atlantic oceans. Major flooding events are typically attributed to heavy precipitation on its eastern side due to upslope (easterly) flows. Precipitation can also occur on the western side of the divide when moisture originating from the Pacific Ocean encounters the west-facing slopes of the Canadian Rockies. Often, storms propagating across the divide result in significant precipitation on both sides. Meteorological data over this critical region are sparse, with few stations located at high elevations. Given the importance of all these types of events, the Storms and Precipitation Across the continental Divide Experiment (SPADE) was initiated to enhance our knowledge of the atmospheric processes leading to storms and precipitation on either side of the continental divide. This was accomplished by installing specialized meteorological instrumentation on both sides of the continental divide and carrying out manual observations during an intensive field campaign from 24 April–26 June 2019. On the eastern side, there were two field sites: (i) at Fortress Mountain Powerline (2076 m a.s.l.) and (ii) at Fortress Junction Service, located in a high-elevation valley (1580 m a.s.l.). On the western side, Nipika Mountain Resort, also located in a valley (1087 m a.s.l.), was chosen as a field site. Various meteorological instruments were deployed including two Doppler light detection and ranging instruments (lidars), three vertically pointing micro rain radars, and three optical disdrometers. The three main sites were nearly identically instrumented, and observers were on site at Fortress Mountain Powerline and Nipika Mountain Resort during precipitation events to take manual observations of precipitation type and microphotographs of solid particles. The objective of the field campaign was to gather high-temporal-frequency meteorological data and to compare the different conditions on either side of the divide to study the precipitation processes that can lead to catastrophic flooding in the region. Details on field sites, instrumentation used, and collection methods are discussed. Data from the study are publicly accessible from the Federated Research Data Repository at https://doi.org/10.20383/101.0221 (Thériault et al., 2020). This dataset will be used to study atmospheric conditions associated with precipitation events documented simultaneously on either side of a continental divide. This paper also provides a sample of the data gathered during a precipitation event.


2021 ◽  
Author(s):  
Caroline Aubry-Wake ◽  
John W. Pomeroy

<p>Glacierized mountain areas are witnessing strong changes in their streamflow generation processes, influencing their capacity to provide crucial water resources to downstream environments. Shifting precipitation patterns, a warming climate, changing snow dynamics and retreating glaciers are occurring simultaneously, driven by complex physical feedbacks. To predict and diagnose future hydrological behaviour in these glacierized catchments, a semi-distributed, physically-based hydrological model including both on and off-glacier process representation was applied to Peyto basin, a 21 km2 glacierized alpine catchment in the Canadian Rockies. The model was forced with bias-corrected outputs from a dynamically downscaled, 4-km resolution Weather and Research Forecasting (WRF) simulation, for the 2000-2015 and 2085-2100 period.  The future WRF runs had boundary conditions perturbed using RCP8.5 late century climate.  The simulations show by the end-of-century, the catchment shifts from a glacial to a nival regime. The increase in precipitation nearly compensates for the decreased ice melt associated with glacier retreat, with a decrease in annual streamflow of only 7%. Peak flow shifts from July to June and August streamflow is reduced by 68%. Changes in blowing snow transport and sublimation, avalanching, evaporation and subsurface water storage also contribute to the strong hydrological shift in the Peyto catchment. A sensitivity analysis to uncertainty in forcing meteorology reveals that streamflow volume is more sensitive to variations in precipitation whereas streamflow timing and variability are more sensitive to variations in temperature. The combination of the temperature and precipitation variations caused substantial changes both in the future snowpack and in the streamflow pattern. By including high-resolution atmospheric modelling and unprecedented both on and off-glacier process-representation in a physically-based hydrological model, the results provide a particularly comprehensive evaluation of the hydrological changes occurring in high-mountain environments in response to climate change.</p>


Sign in / Sign up

Export Citation Format

Share Document