The influence of different oxygen regimes on metabolism and behavior of a soft shell clam Mya arenaria

Author(s):  
Natascha Ouillon ◽  
Stefan Forster ◽  
Abigail Jarret ◽  
Eugene Sokolov ◽  
Inna Sokolova

<p>Hypoxia is widely distributed in coastal benthic habitats and is driven by warming, nutrient pollution and the diurnal cycles of photosynthesis and respiration. Benthic sessile species, such as the soft shell clam <em>Mya arenaria</em>, are commonly exposed to oxygen fluctuations in their habitats which might negatively impact the performance and metabolism of clams. To determine the effects of different oxygen regime on metabolism and behavior of <em>M. arenaria</em>, we exposed the clams for 21 days to chronic (constant) hypoxia at 20% of air saturation, fluctuating (cyclic) hypoxia (~10-50% of air saturation) and normoxia (100% of air saturation). To mimic conditions occurring in coastal hypoxic zones, CO2 and pH levels varied with the oxygen. We assessed the digging performance, bioirrigation capacity and bioenergetics of the clams. Acclimation to constant or cyclic hypoxia did not affect the oxygen consumption of the clams, but the oxygen consumption rates declined at low ambient oxygen concentrations regardless of the acclimation to different oxygen regimes. Clams acclimated to constant hypoxia mainly used lipids, whereas clams acclimated to cyclic hypoxia used carbohydrates as energy fuel. Clams acclimated to constant or cyclic hypoxia dug slower compared to the clams acclimated to normoxia. Furthermore, bioirrigation capacity decreased in clams acclimated to constant hypoxia. Our results indicate that constant and cyclic hypoxia impair bioturbation and bioirrigation capacity of clams which has implications for their ecological function as ecosystem engineers in benthic soft bottom habitats. </p>

2009 ◽  
Vol 12 (3) ◽  
pp. 429-432 ◽  
Author(s):  
Anxo Conde ◽  
Júlio Novais ◽  
Jorge Domínguez

1968 ◽  
Vol 11 (3) ◽  
pp. 504-506 ◽  
Author(s):  
Gilbert B. Pauley ◽  
Thomas C. Cheng

2013 ◽  
Vol 20 (3) ◽  
pp. 430-440 ◽  
Author(s):  
S. Anne Böttger ◽  
Emily J. Amarosa ◽  
Paul Geoghegan ◽  
Charles W. Walker

2009 ◽  
Vol 84 ◽  
pp. 57-63 ◽  
Author(s):  
M AboElkhair ◽  
A Siah ◽  
KF Clark ◽  
P McKenna ◽  
J Pariseau ◽  
...  

Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 416
Author(s):  
Timothy J. Bowden ◽  
Igor Kraev ◽  
Sigrun Lange

Oysters and clams are important for food security and of commercial value worldwide. They are affected by anthropogenic changes and opportunistic pathogens and can be indicators of changes in ocean environments. Therefore, studies into biomarker discovery are of considerable value. This study aimed at assessing extracellular vesicle (EV) signatures and post-translational protein deimination profiles of hemolymph from four commercially valuable Mollusca species, the blue mussel (Mytilus edulis), soft shell clam (Mya arenaria), Eastern oyster (Crassostrea virginica), and Atlantic jacknife clam (Ensis leei). EVs form part of cellular communication by transporting protein and genetic cargo and play roles in immunity and host–pathogen interactions. Protein deimination is a post-translational modification caused by peptidylarginine deiminases (PADs), and can facilitate protein moonlighting in health and disease. The current study identified hemolymph-EV profiles in the four Mollusca species, revealing some species differences. Deiminated protein candidates differed in hemolymph between the species, with some common targets between all four species (e.g., histone H3 and H4, actin, and GAPDH), while other hits were species-specific; in blue mussel these included heavy metal binding protein, heat shock proteins 60 and 90, 2-phospho-D-glycerate hydrolyase, GTP cyclohydrolase feedback regulatory protein, sodium/potassium-transporting ATPase, and fibrinogen domain containing protein. In soft shell clam specific deimination hits included dynein, MCM3-associated protein, and SCRN. In Eastern oyster specific deimination hits included muscle LIM protein, beta-1,3-glucan-binding protein, myosin heavy chain, thaumatin-like protein, vWFA domain-containing protein, BTB domain-containing protein, amylase, and beta-catenin. Deiminated proteins specific to Atlantic jackknife clam included nacre c1q domain-containing protein and PDZ domain-containing protein In addition, some proteins were common as deiminated targets between two or three of the Bivalvia species under study (e.g., EP protein, C1q domain containing protein, histone H2B, tubulin, elongation factor 1-alpha, dominin, extracellular superoxide dismutase). Protein interaction network analysis for the deiminated protein hits revealed major pathways relevant for immunity and metabolism, providing novel insights into post-translational regulation via deimination. The study contributes to EV characterization in diverse taxa and understanding of roles for PAD-mediated regulation of immune and metabolic pathways throughout phylogeny.


Sign in / Sign up

Export Citation Format

Share Document