soft shell
Recently Published Documents


TOTAL DOCUMENTS

455
(FIVE YEARS 74)

H-INDEX

38
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Rachael M Giersch ◽  
Samuel FM Hart ◽  
Satyatejas G Reddy ◽  
Marisa A Yonemitsu ◽  
María J Orellana Rosales ◽  
...  

Many pathogens can cause cancer, but cancer itself does not normally act as an infectious agent. However, transmissible cancers have been found in a few cases in nature: in Tasmanian devils, dogs, and several bivalve species. The transmissible cancers in dogs and devils are known to spread through direct physical contact, but the exact route of transmission of bivalve transmissible neoplasia (BTN) has not yet been confirmed. It has been hypothesized that cancer cells could be released by diseased animals and spread through the water column to infect/engraft into other animals. To test the feasibility of this proposed mechanism of transmission, we tested the ability of BTN cells from the soft-shell clam (Mya arenaria BTN, or MarBTN) to survive in artificial seawater. We found that BTN cells are highly sensitive to salinity, with acute toxicity at salinity levels lower than those found in their environment. BTN cells also survive longer at lower temperatures, with >48% of cells surviving a week in seawater at temperatures from 4°C to 16°C, and 49% surviving for more than two weeks at 4°C. With one clam donor, living cells were observed for more than eight weeks at 4°C. We also used qPCR of environmental DNA (eDNA) to detect the presence of BTN-specific DNA in the environment. We observed release of BTN-specific DNA into the water of aquaria from tanks with highly BTN-positive clams, and we detected BTN-specific DNA in seawater samples collected from BTN-endemic areas, although the level detected was much lower. Overall, these data show that BTN cells can survive well in seawater, and they are released into the water by diseased animals, supporting the hypothesis that BTN is spread from animal-to-animal by cells through seawater.


2021 ◽  
Vol 22 (22) ◽  
pp. 12441
Author(s):  
Jun Zhang ◽  
Peng Yu ◽  
Yang Zhao ◽  
Qinyan Zhou ◽  
Jiayu Yang ◽  
...  

The turtle carapace is composed of severely deformed fused dorsal vertebrae, ribs, and bone plates. In particular, the lateral growth in the superficial layer of turtle ribs in the dorsal trunk causes an encapsulation of the scapula and pelvis. The recent study suggested that the carapacial ridge (CR) is a new model of epithelial–mesenchymal transition which is essential for the arrangement of the ribs. Therefore, it is necessary to explore the regulatory mechanism of carapacial ridge development to analyze the formation of the turtle shell. However, the current understanding of the regulatory network underlying turtle carapacial ridge development is poor due to the lack of both systematic gene screening at different carapacial ridge development stages and gene function verification studies. In this study, we obtained genome-wide gene transcription and gene translation profiles using RNA sequencing and ribosome nascent-chain complex mRNA sequencing from carapacial ridge tissues of Chinese soft-shell turtle at different development stages. A correlation analysis of the transcriptome and translatome revealed that there were 129, 670, and 135 codifferentially expressed genes, including homodirection and opposite-direction differentially expressed genes, among three comparison groups, respectively. The pathway enrichment analysis of codifferentially expressed genes from the Kyoto Encyclopedia of Genes and Genomes showed dynamic changes in signaling pathways involved in carapacial ridge development. Especially, the results revealed that the Wnt signaling pathway and MAPK signaling pathway may play important roles in turtle carapacial ridge development. In addition, Wnt and Fgf were expressed during the carapacial ridge development. Furthermore, we discovered that Wnt5a regulated carapacial ridge development through the Wnt5a/JNK pathway. Therefore, our studies uncover that the morphogenesis of the turtle carapace might function through the co-operation between conserved WNT and FGF signaling pathways. Consequently, our findings revealed the dynamic signaling pathways acting on the carapacial ridge development of Chinese soft-shell turtle and provided new insights into uncover the molecular mechanism underlying turtle shell morphogenesis.


Author(s):  
Alexandra G. Tissot ◽  
Elise F. Granek ◽  
Anne W. Thompson ◽  
Michelle L. Hladik ◽  
Patrick W. Moran ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yukiko Osawa ◽  
Yuho Kinbara ◽  
Masakazu Kageoka ◽  
Kenji Iida ◽  
Abderrahmane Kheddar

AbstractAlmost all robotic systems in use have hard shells, which is limiting in many ways their full potential of physical interaction with humans or their surrounding environment. Robots with soft-shell covers offer an alternative morphology which is more pleasant in both appearance and for haptic human interaction. A persisting challenge in such soft-shell robotic covers is the simultaneous realization of softness and heat-conducting properties. Such heat-conducting properties are important for enabling temperature-control of robotic covers in the range that is comfortable for human touch. The presented soft-shell robotic cover is composed of a linked two-layer structure: (1) The inner layer, with built-in pipes for water circulation, is soft and acts as a thermal-isolation layer between the cover and the robot structure, whereas (2) the outer layer, which can be patterned with a given desired texture and color, allows heat transfer from the circulating water of the inner part to the surface. Moreover, we demonstrate the ability to integrate our prototype cover with a humanoid robot equipped with capacitance sensors. This fabrication technique enables robotic cover possibilities, including tunable color, surface texture, and size, that are likely to have applications in a variety of robotic systems.


Author(s):  
Christina Mae Schaefer ◽  
David Deslauriers ◽  
Ken M Jeffries

Municipal wastewater is a large source of pollution to Canadian waters, yet its effects on Arctic marine ecosystems remains relatively unknown. We characterized the impacts of municipal wastewater from a growing northern community, Iqaluit, Nunavut on the Arctic truncate soft-shell clam,Mya truncata. Clams were sampled from six locations that varied in proximity to the wastewater treatment plant and shell biogeochemical analysis revealed that clams nearest the wastewater treatment plant had slower growth rates, lower carbon and oxygen stable isotope ratios, and elevated concentrations of copper and lead. A parallel analysis on mRNA expression profiles characterized M. truncata’s physiological response to wastewater effluent. Clams nearest the wastewater treatment plant had significantly lower mRNA expression of genes associated with metabolism, antioxidants, molecular chaperones, and phase I and II detoxification, but had heightened mRNA expression in genes coding for enzymes that bind and remove contaminants. These results demonstrated a biological response to Iqaluit’s wastewater effluent and highlight M. truncata’s potential to act as a biomonitor of municipal wastewater along Arctic coastlines in Canada.


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Lara Frenzel ◽  
Michael Dartsch ◽  
Gerard Martí Balaguer ◽  
Fabian Westermeier ◽  
Gerhard Grübel ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document