Statistical EMIC diffusion models calculated by averaging observation specific diffusion coefficients

Author(s):  
Johnathan Ross ◽  
Sarah Glauert ◽  
Richard Horne ◽  
Nigel Meredith ◽  
Clare Watt

<p>Electromagnetic ion cyclotron (EMIC) waves play an important role in relativistic electron losses in the radiation belts through diffusion via resonant wave-particle interactions. We present a new statistical model of electron diffusion by EMIC waves calculated, using Van Allen Probe observations, by averaging observation specific diffusion coefficients. The resulting diffusion coefficients therefore capture a wider range of wave-particle interactions than previous average models which are calculated using average observations. These calculations, and their role in radiation belt simulations, are then compared against existing diffusion models. The new diffusion coefficients are found to significantly improve the agreement between the calculated decay of relativistic electrons and Van Allen Probes data.</p><p> </p>

2016 ◽  
Vol 23 (4) ◽  
pp. 042101 ◽  
Author(s):  
A. K. Tripathi ◽  
R. P. Singhal ◽  
G. V. Khazanov ◽  
L. A. Avanov

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Daniel N. Baker

AbstractDiscovering such structures as the third radiation belt (or “storage ring”) has been a major observational achievement of the NASA Radiation Belt Storm Probes program (renamed the “Van Allen Probes” mission in November 2012). A goal of that program was to understand more thoroughly how high-energy electrons are accelerated deep inside the radiation belts—and ultimately lost—due to various wave–particle interactions. Van Allen Probes studies have demonstrated that electrons ranging up to 10 megaelectron volts (MeV) or more can be produced over broad regions of the outer Van Allen zone on timescales as short as a few minutes. The key to such rapid acceleration is the interaction of “seed” populations of ~ 10–200 keV electrons (and subsequently higher energies) with electromagnetic waves in the lower band (whistler-mode) chorus frequency range. Van Allen Probes data show that “source” electrons (in a typical energy range of one to a few tens of keV energy) produced by magnetospheric substorms play a crucial role in feeding free energy into the chorus waves in the outer zone. These chorus waves then, in turn, rapidly heat and accelerate the tens to hundreds of keV seed electrons injected by substorms to much higher energies. Hence, we often see that geomagnetic activity driven by strong solar storms (coronal mass ejections, or CMEs) commonly leads to ultra-relativistic electron production through the intermediary step of waves produced during intense magnetospheric substorms. More generally, wave–particle interactions are of fundamental importance over a broad range of energies and in virtually all regions of the magnetosphere. We provide a summary of many of the wave modes and particle interactions that have been studied in recent times.


2018 ◽  
Vol 123 (6) ◽  
pp. 4652-4667 ◽  
Author(s):  
C. Wang ◽  
R. Rankin ◽  
Y. Wang ◽  
Q.-G. Zong ◽  
X. Zhou ◽  
...  

2021 ◽  
Author(s):  
Christos Katsavrias ◽  
Ioannis A. Daglis ◽  
Afroditi Nasi ◽  
Constantinos Papadimitriou ◽  
Marina Georgiou

<p>Radial diffusion has been established as one of the most important mechanisms contributing the acceleration and loss of relativistic electrons in the outer radiation belt. Over the past few years efforts have been devoted to provide empirical relationships of radial diffusion coefficients (D<sub>LL</sub>) for radiation belt simulations yet several studies have suggested that the difference between the various models can be orders of magnitude different at high levels of geomagnetic activity as the observed D<sub>LL</sub> have been shown to be highly event-specific. In the frame of SafeSpace project we have used 12 years (2009 – 2020) of multi-point magnetic and electric field measurements from THEMIS A, D and E satellites to create a database of calculated D<sub>LL</sub>. In this work we present the first statistics on the evolution of D<sub>LL </sub>during the various phases of Solar cycle 24 with respect to the various solar wind parameters and geomagnetic indices.</p><p>This work has received funding from the European Union's Horizon 2020 research and innovation programme “SafeSpace” under grant agreement No 870437.</p>


2021 ◽  
Author(s):  
Geng Wang ◽  
Zhonglei Gao ◽  
Mingyu Wu ◽  
Guoqiang Wang ◽  
Sudong Xiao ◽  
...  

Abstract Electromagnetic ion cyclotron (EMIC) waves can cause the scattering loss of the relativistic electrons in the earth's radiation belt. They can be classified into the guided mode and the unguided mode, according to waves propagation behavior. The guided mode waves have been widely investigated in the radiation belt, but the observation of the unguided mode waves have not been expected. Based on the observations of Van Allen Probes, we demonstrate for the first time the existence of the intense unguided mode EMIC waves. The reflection interface formed by the spatial locations of local helium cutoff frequencies can be nearly parallel to the equatorial plane when the proton abundance ratio decreases sharply with L-shell. This structure combined with the anisotropic hot protons can lead to the trapping and significant amplification of the unguided mode waves. These results may help to understand the nature of EMIC waves in the radiation belt.


Sign in / Sign up

Export Citation Format

Share Document