scholarly journals Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons

Author(s):  
Lauri Heiskanen ◽  
Juha-Pekka Tuovinen ◽  
Aleksi Räsänen ◽  
Tarmo Virtanen ◽  
Sari Juutinen ◽  
...  

<p>Abstract</p><p>Northern mires have sequestered substantial amounts of atmospheric carbon since the last glacial period forming one of the largest carbon pools in the biosphere (Hugelius et al., 2020). Current global warming is causing the subarctic and arctic regions warm rapidly, two to three times as fast as the rest of the world (Masson-Delmotte et al., 2018), which will affect the carbon balance of these mires.</p><p>In Kaamanen, northern Finland, we studied carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) exchange between patterned mesotrophic fen and the atmosphere, both on ecosystem and plant community level. The ecosystem level measurements were conducted by utilizing eddy covariance method, while the fluxes on plant community scale were measured with flux chambers. The studied fen can be described as a mosaic of strings and flarks (or hummocks and hollows, respectively). The microtopography of the string-flark continuum form four main plant community types with varying water table conditions and vegetation composition. The measurements took place in 2017–2018. The two years in question were contrasting in their meteorological and environmental conditions. The 2017 growing season had average temperature, but high precipitation sum, while 2018 growing season was warm and dry. In July 2018 a north-western Europe-wide heatwave caused a month-long drought period at the site. Compared to 2017, the annual carbon balance of the Kaamanen fen was affected by earlier onset of photosynthesis in spring and the drought event during summer 2018.</p><p>We found that the annual carbon balance of the fen did not differ markedly between the studied years, even though the meteorological and environmental conditions did. The earlier onset of growing season in 2018 strengthened the CO<sub>2</sub> sink of the ecosystem, but this gain was counterbalanced by the later drought period. Additionally, we found strong spatial variation in CO<sub>2</sub> and CH<sub>4</sub> dynamics between the main plant communities. Most of the variation in ecosystem level carbon exchange could be explained by the variation in water table level, soil temperature and vegetation characteristics, which were also the environmental factors that varied between the plant community types.</p><p> </p><p>References</p><p>Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C., Turetsky, M., Voigt, C. and Yu, Z.: Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw, Proceedings of the National Academy of Sciences - PNAS, 117, 20438–20446, doi:10.1073/pnas.1916387117, 2020.</p><p>Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M. and Waterfield T. (Eds.): Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, World Meteorological Organization, Geneva, Switzerland, 2018.</p>

2013 ◽  
Vol 10 (5) ◽  
pp. 2885-2896 ◽  
Author(s):  
M. Strack ◽  
Y. C. A. Zuback

Abstract. Undisturbed peatlands represent long-term net sinks of carbon; however, peat extraction converts these systems into large and persistent sources of greenhouse gases. Although rewetting and restoration following peat extraction have taken place over the last several decades, very few studies have investigated the longer term impact of this restoration on peatland carbon balance. We determined the annual carbon balance of a former horticulturally-extracted peatland restored 10 yr prior to the study and compared these values to the carbon balance measured at neighboring unrestored and natural sites. Carbon dioxide (CO2) and methane (CH4) fluxes were measured using the chamber technique biweekly during the growing season from May to October 2010 and three times over the winter period. Dissolved organic carbon (DOC) export was measured from remnant ditches in the unrestored and restored sites. During the growing season the restored site had greater uptake of CO2 than the natural site when photon flux density was greater than 1000 μmol m−2 s−1, while the unrestored site remained a source of CO2. Ecosystem respiration was similar between natural and restored sites, which were both significantly lower than the unrestored site. Methane flux remained low at the restored site except from open water pools, created as part of restoration, and remnant ditches. Export of DOC during the growing season was 5.0 and 28.8 g m−2 from the restored and unrestored sites, respectively. Due to dry conditions during the study year all sites acted as net carbon sources with annual balance of the natural, restored and unrestored sites of 250.7, 148.0 and 546.6 g C m−2, respectively. Although hydrological conditions and vegetation community at the restored site remained intermediate between natural and unrestored conditions, peatland restoration resulted in a large reduction in annual carbon loss from the system resulting in a carbon balance more similar to a natural peatland.


2021 ◽  
Vol 18 (3) ◽  
pp. 873-896
Author(s):  
Lauri Heiskanen ◽  
Juha-Pekka Tuovinen ◽  
Aleksi Räsänen ◽  
Tarmo Virtanen ◽  
Sari Juutinen ◽  
...  

Abstract. The patterned microtopography of subarctic mires generates a variety of environmental conditions, and carbon dioxide (CO2) and methane (CH4) dynamics vary spatially among different plant community types (PCTs). We studied the CO2 and CH4 exchange between a subarctic fen and the atmosphere at Kaamanen in northern Finland based on flux chamber and eddy covariance measurements in 2017–2018. We observed strong spatial variation in carbon dynamics between the four main PCTs studied, which were largely controlled by water table level and differences in vegetation composition. The ecosystem respiration (ER) and gross primary productivity (GPP) increased gradually from the wettest PCT to the drier ones, and both ER and GPP were larger for all PCTs during the warmer and drier growing season 2018. We estimated that in 2017 the growing season CO2 balances of the PCTs ranged from −20 g C m−2 (Trichophorum tussock PCT) to 64 g C m−2 (string margin PCT), while in 2018 all PCTs were small CO2 sources (10–22 g C m−2). We observed small growing season CH4 emissions (< 1 g C m−2) from the driest PCT, while the other three PCTs had significantly larger emissions (mean 7.9, range 5.6–10.1 g C m−2) during the two growing seasons. Compared to the annual CO2 balance (−8.5 ± 4.0 g C m−2) of the fen in 2017, in 2018 the annual balance (−5.6 ± 3.7 g C m−2) was affected by an earlier onset of photosynthesis in spring, which increased the CO2 sink, and a drought event during summer, which decreased the sink. The CH4 emissions were also affected by the drought. The annual CH4 balance of the fen was 7.3 ± 0.2 g C m−2 in 2017 and 6.2 ± 0.1 g C m−2 in 2018. Thus, the carbon balance of the fen was close to zero in both years. The PCTs that were adapted to drier conditions provided ecosystem-level resilience to carbon loss due to water level drawdown.


2020 ◽  
Author(s):  
Lauri Heiskanen ◽  
Juha-Pekka Tuovinen ◽  
Aleksi Räsänen ◽  
Tarmo Virtanen ◽  
Sari Juutinen ◽  
...  

Abstract. The patterned microtopography of subarctic mires generates a variety of environmental conditions, and carbon dioxide (CO2) and methane (CH4) dynamics vary spatially among different plant community types. We studied the CO2 and CH4 exchange between a subarctic fen and the atmosphere at Kaamanen in northern Finland based on flux chamber and eddy covariance measurements in 2017–2018. We observed strong spatial variation in carbon dynamics between the four main plant community types (PCTs) studied, which were largely controlled by water table level and differences in vegetation composition. The ecosystem respiration (ER) and gross primary productivity (GPP) increased gradually from the wettest PCT to the drier ones, and both ER and GPP were larger for all PCTs during the warmer and drier growing season 2018. We estimated that in 2017 the growing season CO2 balances of the PCTs ranged from −20 g C m−2 (Trichophorum tussock PCT) to 64 g C m−2 (string margin PCT), while in 2018 all PCTs were small CO2 sources (10–22 g C m−2). We observed small growing season CH4 emission sums (


2002 ◽  
Vol 16 (4) ◽  
pp. 62-1-62-15 ◽  
Author(s):  
Juha E. P. Heikkinen ◽  
Vladimir Elsakov ◽  
Pertti J. Martikainen

2012 ◽  
Vol 9 (12) ◽  
pp. 17203-17233 ◽  
Author(s):  
M. Strack ◽  
Y. C. A. Zuback

Abstract. Undisturbed peatlands represent long term net sinks of carbon; however, peat extraction converts these systems into large and persistent sources of greenhouse gases. Although rewetting and restoration following peat extraction have taken place over the last several decades, very few studies have investigated the longer term impact of this restoration on peatland carbon balance. We determined the annual carbon balance of a former horticulturally-extracted peatland restored 10 yr prior to the study and compared these values to the carbon balance measured at neighboring unrestored and natural sites. Carbon dioxide (CO2) and methane (CH4) fluxes were measured using the chamber technique biweekly during the growing season from May to October 2010 and three times over the winter period. Dissolved organic carbon (DOC) export was measured from remnant ditches in the unrestored and restored sites. During the growing season the restored site had greater uptake of CO2 than the natural site when photon flux density was greater than 1000 µmol m−2 s−1, while the unrestored site remained a source of CO2. Ecosystem respiration was similar between natural and restored sites, which were both significantly lower than the unrestored site. Methane flux remained low at the restored site except from open water pools, created as part of restoration, and remnant ditches. Export of DOC during the growing season was 5.0 and 28.8 g m−2 from the restored and unrestored sites, respectively. Due to dry conditions during the study year all sites acted as net carbon sources with annual balance of the natural, restored and unrestored sites of 250.7, 148.0 and 546.6 g C m−2, respectively. Although hydrological conditions and vegetation community at the restored site remained intermediate between natural and unrestored conditions, the site acted as a smaller source of carbon than the natural peatland suggesting that near natural carbon balance can be returned ~ 10 yr post-restoration.


Tellus B ◽  
2007 ◽  
Vol 59 (5) ◽  
Author(s):  
Brynhildur Bjarnadottir ◽  
Bjarni D. Sigurdsson ◽  
Anders Lindroth

2002 ◽  
Vol 16 (3) ◽  
pp. 4-1-4-21 ◽  
Author(s):  
Steve Frolking ◽  
Nigel T. Roulet ◽  
Tim R. Moore ◽  
Peter M. Lafleur ◽  
Jill L. Bubier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document