eddy covariance measurements
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 67)

H-INDEX

45
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Will S. Drysdale ◽  
Adam R. Vaughan ◽  
Freya A. Squires ◽  
Sam J. Cliff ◽  
Stefan Metzger ◽  
...  

Abstract. During March–June 2017 emissions of nitrogen oxides were measured via eddy covariance at the British Telecom Tower in central London, UK. Through the use of a footprint model the expected emissions were simulated from the spatially resolved National Atmospheric Emissions Inventory for 2017, and compared with the measured emissions. These simulated emissions were shown to underestimate measured emissions during the day time by a factor of 1.48, but they agreed well overnight. Furthermore, underestimations were spatially mapped and the areas around the measurement site responsible for differences in measured and simulated emissions inferred. It was observed that areas of higher traffic, such as major roads near national rail stations, showed the greatest underestimation by the simulated emissions. These discrepancies are partially attributed to a combination of the inventory not fully capturing traffic conditions in central London, and both spatial and temporal resolution of the inventory not fully describing the high heterogeneity of the urban centre. Understanding of this underestimation may further improved with longer measurement time series ,to better understand temporal variation, and improved temporal scaling factors, to better simulate sub-annual emissions.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1296
Author(s):  
Xiaonan Guo ◽  
Guofei Shang ◽  
Yun Tian ◽  
Xin Jia ◽  
Tianshan Zha ◽  
...  

Knowledge about the dynamics and biophysical controlling mechanism of nocturnal evapotranspiration (ETN) in desert-dwelling shrub ecosystem is still lacking. Using the eddy covariance measurements of latent heat flux in a dried shrubland in northwest China, we examined the dynamics of ETN and its biophysical controls at multiple timescales during growing-seasons from 2012 to 2014. The ETN was larger in the mid-growing season (usually in mid-summer) than in spring and autumn. The maximum daily ETN was 0.21, 0.17, and 0.14 mm night−1 in years 2012–2014, respectively. At the diel scale, ETN decreased from 21:00 to 5:00, then began to increase. ETN were mainly controlled by soil volumetric water content at 30 cm depth (VWC30), by vapor pressure deficit (VPD) and normalized difference vegetation index (NDVI) at leaf expanding and expanded stage, and by air temperature (Ta) and wind speed (Ws) at the leaf coloring stage. At the seasonal scale, variations of ETN were mainly driven by Ta, VPD, and VWC10. Averaged annual ETN was 4% of daytime ET. The summer drought in 2013 and the spring drought in 2014 caused the decline of daily evapotranspiration (ET). The present results demonstrated that ETN is a significant part of the water cycle and needs to be seriously considered in ET and related studies. The findings here can help with the sustainable management of water in desert ecosystems undergoing climate change.


2021 ◽  
Vol 262 ◽  
pp. 112523
Author(s):  
Caiyun Zhang ◽  
David Brodylo ◽  
Matthew J. Sirianni ◽  
Tiantian Li ◽  
Xavier Comas ◽  
...  

2021 ◽  
Author(s):  
Timothy J. Wardlaw

Abstract Tasmania, which has a cool temperate climate, experienced a protracted warm spell in November 2017. In absolute terms, temperatures during the warm spell were lower than those usually characterising heatwaves. Nonetheless the November 2017 warm spell represented an extreme anomaly based on the local historical climate. Eddy covariance measurements of fluxes made in a Eucalyptus obliqua tall forest at Warra, southern Tasmania, recorded a 39% reduction in gross primary productivity (GPP) during the warm spell. A coincident increase in ecosystem respiration during the warm spell resulted in the forest switching from a carbon sink to a source. Net radiation was significantly higher during the warm spell than in the same period in the preceding two years. This additional radiation drove an increase in latent heat but not sensible heat. Stomatal regulation to limit water loss was unlikely based on soil moisture and vapour pressure deficits. Temperatures during the warm spell were supra-optimal for GPP at that site for 75% of the daylight hours. The decline in GPP during the warm spell was therefore most likely due to temperatures exceeding the site optimum for GPP. These forests will be weaker carbon sinks if, as predicted, heatwave events become more common.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ülo Mander ◽  
Alisa Krasnova ◽  
Jordi Escuer-Gatius ◽  
Mikk Espenberg ◽  
Thomas Schindler ◽  
...  

AbstractRiparian forests are known as hot spots of nitrogen cycling in landscapes. Climate warming speeds up the cycle. Here we present results from a multi-annual high temporal-frequency study of soil, stem, and ecosystem (eddy covariance) fluxes of N2O from a typical riparian forest in Europe. Hot moments (extreme events of N2O emission) lasted a quarter of the study period but contributed more than half of soil fluxes. We demonstrate that high soil emissions of N2O do not escape the ecosystem but are processed in the canopy. Rapid water content change across intermediate soil moisture was a major determinant of elevated soil emissions in spring. The freeze-thaw period is another hot moment. However, according to the eddy covariance measurements, the riparian forest is a modest source of N2O. We propose photochemical reactions and dissolution in canopy-space water as reduction mechanisms.


Author(s):  
Katarzyna Misiura ◽  
Katarzyna Dabrowska-Zielinska ◽  
Radoslaw Grudak ◽  
Patryk Grzybowski ◽  
Marcin Kluczek

2021 ◽  
Vol 11 (11) ◽  
pp. 5189
Author(s):  
Felix Witt ◽  
Javis Nwaboh ◽  
Henning Bohlius ◽  
Astrid Lampert ◽  
Volker Ebert

Water vapor fluxes play a key role in the energy budget of the atmosphere, and better flux measurements are needed to improve our understanding of the formation of clouds and storms. Large-scale measurements of these fluxes are possible by employing the eddy correlation (EC) method from an aircraft. A hygrometer used for such measurements needs to deliver a temporal resolution of at least 10 Hz while reliably operating in the harsh conditions on the exterior of an aircraft. Here, we present a design concept for a calibration-free, first-principles, open-path dTDLAS hygrometer with a planar, circular and rotationally symmetric multipass cell with new, angled coupling optics. From our measurements, the uncertainty of the instrument is estimated to be below 4.5% (coverage factor k = 1). A static intercomparison between a dTDLAS prototype of the new optics setup and a traceable dew point mirror hygrometer was conducted and showed a systematic relative deviation of 2.6% with a maximal relative error of 2.2%. Combined with a precision of around 1 ppm H2O at tropospheric conditions, the newly designed setup fulfills the static precision and accuracy requirements of the proposed airborne EC hygrometer.


Sign in / Sign up

Export Citation Format

Share Document