Role of the internal climate variability in the atmospheric response to a sudden summer Arctic sea ice loss

Author(s):  
Steve Delhaye ◽  
Thierry Fichefet ◽  
François Massonnet ◽  
David Docquier ◽  
Christopher Roberts ◽  
...  

<p>The retreat of Arctic sea ice for the last four decades is a primary manifestation of the climate system response to increasing atmospheric greenhouse gas concentrations. This retreat is frequently considered as a possible driver of atmospheric circulation anomalies at mid-latitudes. However, the year-to-year evolution of the Arctic sea ice cover is also characterized by significant fluctuations attributed to internal climate variability. It is unclear how the atmosphere will respond to a near-total retreat of summer Arctic sea ice, a reality that might occur in the foreseeable future. This study uses sensitivity experiments  with higher and lower horizontal resolution configurations of three global coupled climate models to investigate the local and remote atmospheric responses to a reduction in Arctic sea ice cover during the preceding summer. Recognizing that these responses likely depend on the model itself and on its horizontal resolution, and that the model’s internally-generated climate variability may obscure the atmospheric response, we design a protocol to compare each source separately. After imposing a 15-month albedo perturbation resulting in a sudden summer Arctic sea ice loss, the remote mid-latitude climate response has a very low signal-to-noise ratio such that internal climate variability dominates the uncertainty of the response, regardless of the atmospheric variable. Indeed, more than 28, 165 and 210 members are needed to detect a robust response in surface air temperature, precipitation and sea level pressure to sea ice loss in Europe, respectively. Finally, we find that horizontal resolution plays a secondary role in the uncertainty of the atmospheric response to substantial perturbation of Arctic sea ice. These findings suggest that even with higher resolution model configurations, it is important to have large ensemble sizes to increase the signal to noise ratio for the mid-latitude atmospheric response to sea ice changes.</p>

2020 ◽  
Author(s):  
Amber Walsh ◽  
James Screen ◽  
Adam Scaife ◽  
Doug Smith ◽  
Rosie Eade

<p>The climate response to Arctic sea-ice loss is highly uncertain. There exists considerable disagreement between observational and modelling studies, and between models, for reasons that remain poorly understood. To make progress, the Polar Amplification Model Intercomparison Project (PAMIP) was designed to provide coordinated experiments, with consistent sea-ice loss applied in multiple models. Results from the PAMIP are presented, focussing on the robustness of the atmospheric response to Arctic sea-ice loss across models and, within individual models, the dependence of the response on the mean state.</p><p>In the troposphere, the mid-latitude jet is either weakened and/or shifted towards the equator in all models, albeit with varying magnitudes. We hypothesise that the magnitude of the jet response is sensitive to the atmospheric model resolution. To test this, and to more broadly identify the aspects of the atmospheric response that are sensitive to model resolution, we compare like-for-like experiments with two versions of the HadGEM3 model at low (N96) and high (N216) horizontal resolution.</p><p>The stratospheric polar vortex response to Arctic sea-ice loss is not consistent between models, and appears to be influenced by both the size of the ensemble for each model and the phase of the Quasi-Biennial Oscillation (QBO). The possible modulating effect of the QBO is further explored using new simulations with background atmospheric states representing the easterly and westerly QBO phases.</p><p>A surprising early result from the PAMIP simulations were sizeable changes in the Southern Hemisphere in response to Arctic sea-ice loss and significant changes in the Northern Hemisphere in response to Antarctic sea-ice loss, even in atmosphere-only model experiments. The robustness of such apparent interhemispheric connections across models, ensemble sizes and mean states is investigated.</p><p> </p><p> </p><p> </p>


2021 ◽  
pp. 1-54
Author(s):  
Y. Peings ◽  
Z. Labe ◽  
G. Magnusdottir

AbstractThis study presents results from the Polar Amplification Multimodel Intercomparison Project (PAMIP) single-year time-slice experiments that aim to isolate the atmospheric response to Arctic sea ice loss at global warming levels of +2°C. Using two General Circulation Models (GCMs), the ensemble size is increased up to 300 ensemble members, beyond the recommended 100 members. After partitioning the response in groups of 100-ensemble members, the reproducibility of the results is evaluated, with a focus on the response of the mid-latitude jet streams in the North Atlantic and North Pacific. Both atmosphere-only and coupled ocean-atmosphere PAMIP experiments are analyzed. Substantial differences in the mid-latitude response are found among the different experiment subsets, suggesting that 100-member ensembles are still significantly influenced by internal variability, which can mislead conclusions. Despite an overall stronger response, the coupled ocean-atmosphere runs exhibit greater spread due to additional ENSO-related internal variability when the ocean is interactive. The lack of consistency in the response is true for anomalies that are statistically significant according to Student’s-t and False Discovery Rate tests. This is problematic for the multi-model assessment of the response, as some of the spread may be attributed to different model sensitivities while it is due to internal variability. We propose a method to overcome this consistency issue, that allows for more robust conclusions when only 100 ensemble members are used.


2018 ◽  
Vol 11 (3) ◽  
pp. 155-163 ◽  
Author(s):  
James A. Screen ◽  
Clara Deser ◽  
Doug M. Smith ◽  
Xiangdong Zhang ◽  
Russell Blackport ◽  
...  

2019 ◽  
Vol 46 (13) ◽  
pp. 7663-7671 ◽  
Author(s):  
Zachary Labe ◽  
Yannick Peings ◽  
Gudrun Magnusdottir

2015 ◽  
Vol 141 (691) ◽  
pp. 2070-2076 ◽  
Author(s):  
R. E. Petrie ◽  
L. C. Shaffrey ◽  
R. T. Sutton

2015 ◽  
Vol 28 (6) ◽  
pp. 2168-2186 ◽  
Author(s):  
Clara Deser ◽  
Robert A. Tomas ◽  
Lantao Sun

Abstract The role of ocean–atmosphere coupling in the zonal-mean climate response to projected late twenty-first-century Arctic sea ice loss is investigated using Community Climate System Model version 4 (CCSM4) at 1° spatial resolution. Parallel experiments with different ocean model configurations (full-depth, slab, and no interactive ocean) allow the roles of dynamical and thermodynamic ocean feedbacks to be isolated. In the absence of ocean coupling, the atmospheric response to Arctic sea ice loss is confined to north of 30°N, consisting of a weakening and equatorward shift of the westerlies accompanied by lower tropospheric warming and enhanced precipitation at high latitudes. With ocean feedbacks, the response expands to cover the whole globe and exhibits a high degree of equatorial symmetry: the entire troposphere warms, the global hydrological cycle strengthens, and the intertropical convergence zones shift equatorward. Ocean dynamics are fundamental to producing this equatorially symmetric pattern of response to Arctic sea ice loss. Finally, the absence of a poleward shift of the wintertime Northern Hemisphere westerlies in CCSM4’s response to greenhouse gas radiative forcing is shown to result from the competing effects of Arctic sea ice loss and greenhouse warming on the meridional temperature gradient in middle latitudes.


2018 ◽  
Vol 45 (11) ◽  
pp. 5635-5642 ◽  
Author(s):  
Zachary Labe ◽  
Yannick Peings ◽  
Gudrun Magnusdottir

2013 ◽  
Vol 26 (4) ◽  
pp. 1230-1248 ◽  
Author(s):  
James A. Screen ◽  
Ian Simmonds ◽  
Clara Deser ◽  
Robert Tomas

Abstract Arctic sea ice is declining at an increasing rate with potentially important repercussions. To understand better the atmospheric changes that may have occurred in response to Arctic sea ice loss, this study presents results from atmospheric general circulation model (AGCM) experiments in which the only time-varying forcings prescribed were observed variations in Arctic sea ice and accompanying changes in Arctic sea surface temperatures from 1979 to 2009. Two independent AGCMs are utilized in order to assess the robustness of the response across different models. The results suggest that the atmospheric impacts of Arctic sea ice loss have been manifested most strongly within the maritime and coastal Arctic and in the lowermost atmosphere. Sea ice loss has driven increased energy transfer from the ocean to the atmosphere, enhanced warming and moistening of the lower troposphere, decreased the strength of the surface temperature inversion, and increased lower-tropospheric thickness; all of these changes are most pronounced in autumn and early winter (September–December). The early winter (November–December) atmospheric circulation response resembles the negative phase of the North Atlantic Oscillation (NAO); however, the NAO-type response is quite weak and is often masked by intrinsic (unforced) atmospheric variability. Some evidence of a late winter (March–April) polar stratospheric cooling response to sea ice loss is also found, which may have important implications for polar stratospheric ozone concentrations. The attribution and quantification of other aspects of the possible atmospheric response are hindered by model sensitivities and large intrinsic variability. The potential remote responses to Arctic sea ice change are currently hard to confirm and remain uncertain.


2021 ◽  
Author(s):  
Hannah Bailey ◽  
Alun Hubbard ◽  
Eric S. Klein ◽  
Kaisa-Riikka Mustonen ◽  
Pete D. Akers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document