scholarly journals The Atmospheric Response to Three Decades of Observed Arctic Sea Ice Loss

2013 ◽  
Vol 26 (4) ◽  
pp. 1230-1248 ◽  
Author(s):  
James A. Screen ◽  
Ian Simmonds ◽  
Clara Deser ◽  
Robert Tomas

Abstract Arctic sea ice is declining at an increasing rate with potentially important repercussions. To understand better the atmospheric changes that may have occurred in response to Arctic sea ice loss, this study presents results from atmospheric general circulation model (AGCM) experiments in which the only time-varying forcings prescribed were observed variations in Arctic sea ice and accompanying changes in Arctic sea surface temperatures from 1979 to 2009. Two independent AGCMs are utilized in order to assess the robustness of the response across different models. The results suggest that the atmospheric impacts of Arctic sea ice loss have been manifested most strongly within the maritime and coastal Arctic and in the lowermost atmosphere. Sea ice loss has driven increased energy transfer from the ocean to the atmosphere, enhanced warming and moistening of the lower troposphere, decreased the strength of the surface temperature inversion, and increased lower-tropospheric thickness; all of these changes are most pronounced in autumn and early winter (September–December). The early winter (November–December) atmospheric circulation response resembles the negative phase of the North Atlantic Oscillation (NAO); however, the NAO-type response is quite weak and is often masked by intrinsic (unforced) atmospheric variability. Some evidence of a late winter (March–April) polar stratospheric cooling response to sea ice loss is also found, which may have important implications for polar stratospheric ozone concentrations. The attribution and quantification of other aspects of the possible atmospheric response are hindered by model sensitivities and large intrinsic variability. The potential remote responses to Arctic sea ice change are currently hard to confirm and remain uncertain.

2017 ◽  
Vol 30 (11) ◽  
pp. 3945-3962 ◽  
Author(s):  
James A. Screen

Abstract The loss of Arctic sea ice is already having profound environmental, societal, and ecological impacts locally. A highly uncertain area of scientific research, however, is whether such Arctic change has a tangible effect on weather and climate at lower latitudes. There is emerging evidence that the geographical location of sea ice loss is critically important in determining the large-scale atmospheric circulation response and associated midlatitude impacts. However, such regional dependencies have not been explored in a thorough and systematic manner. To make progress on this issue, this study analyzes ensemble simulations with an atmospheric general circulation model prescribed with sea ice loss separately in nine regions of the Arctic, to elucidate the distinct responses to regional sea ice loss. The results suggest that in some regions, sea ice loss triggers large-scale dynamical responses, whereas in other regions sea ice loss induces only local thermodynamical changes. Sea ice loss in the Barents–Kara Seas is unique in driving a weakening of the stratospheric polar vortex, followed in time by a tropospheric circulation response that resembles the North Atlantic Oscillation. For October–March, the largest spatial-scale responses are driven by sea ice loss in the Barents–Kara Seas and the Sea of Okhotsk; however, different regions assume greater importance in other seasons. The atmosphere responds very differently to regional sea ice losses than to pan-Arctic sea ice loss, and the response to pan-Arctic sea ice loss cannot be obtained by the linear addition of the responses to regional sea ice losses. The results imply that diversity in past studies of the simulated response to Arctic sea ice loss can be partly explained by the different spatial patterns of sea ice loss imposed.


2021 ◽  
pp. 1-54
Author(s):  
Y. Peings ◽  
Z. Labe ◽  
G. Magnusdottir

AbstractThis study presents results from the Polar Amplification Multimodel Intercomparison Project (PAMIP) single-year time-slice experiments that aim to isolate the atmospheric response to Arctic sea ice loss at global warming levels of +2°C. Using two General Circulation Models (GCMs), the ensemble size is increased up to 300 ensemble members, beyond the recommended 100 members. After partitioning the response in groups of 100-ensemble members, the reproducibility of the results is evaluated, with a focus on the response of the mid-latitude jet streams in the North Atlantic and North Pacific. Both atmosphere-only and coupled ocean-atmosphere PAMIP experiments are analyzed. Substantial differences in the mid-latitude response are found among the different experiment subsets, suggesting that 100-member ensembles are still significantly influenced by internal variability, which can mislead conclusions. Despite an overall stronger response, the coupled ocean-atmosphere runs exhibit greater spread due to additional ENSO-related internal variability when the ocean is interactive. The lack of consistency in the response is true for anomalies that are statistically significant according to Student’s-t and False Discovery Rate tests. This is problematic for the multi-model assessment of the response, as some of the spread may be attributed to different model sensitivities while it is due to internal variability. We propose a method to overcome this consistency issue, that allows for more robust conclusions when only 100 ensemble members are used.


2019 ◽  
Vol 46 (13) ◽  
pp. 7663-7671 ◽  
Author(s):  
Zachary Labe ◽  
Yannick Peings ◽  
Gudrun Magnusdottir

2019 ◽  
Vol 124 (21) ◽  
pp. 11313-11329 ◽  
Author(s):  
Evangelos Tyrlis ◽  
Elisa Manzini ◽  
Jürgen Bader ◽  
Jinro Ukita ◽  
Hisashi Nakamura ◽  
...  

2016 ◽  
Author(s):  
Manabu Abe ◽  
Toru Nozawa ◽  
Tomoo Ogura ◽  
Kumiko Takata

Abstract. This study investigates the effect of sea ice reduction on Arctic cloud cover in historical simulations with the coupled Atmosphere-Ocean general circulation model MIROC5. Arctic sea ice has been shown to exhibit substantial reductions under simulated global warming conditions since the 1970s, particularly in September. This simulated reduction is consistent with satellite observation results. However, Arctic cloud cover increases significantly during October, leading to extensive reductions in sea ice because of the enhanced heat and moisture fluxes from the underlying ocean. Sensitivity experiments with the atmospheric model MIROC5 clearly show that sea ice reduction causes increased cloud cover. Increased cloud cover occurs primarily in the lower troposphere; however, clouds in the thin surface layers directly above the ocean decrease despite the increased moisture flux because the surface air temperature rises in these thin layers, causing the relative humidity to decrease. As cloud cover increases, the cloud radiative effect cause an increase in the surface downward longwave radiation (DLR) by approximately 40–60 % compared with changes in clear-sky surface DLR in fall. These results suggest that an increase in Arctic cloud cover as a result of reduced sea ice coverage may further melt the sea ice and enhance the feedback processes of Arctic warming.


2021 ◽  
Author(s):  
Steve Delhaye ◽  
Thierry Fichefet ◽  
François Massonnet ◽  
David Docquier ◽  
Christopher Roberts ◽  
...  

<p>The retreat of Arctic sea ice for the last four decades is a primary manifestation of the climate system response to increasing atmospheric greenhouse gas concentrations. This retreat is frequently considered as a possible driver of atmospheric circulation anomalies at mid-latitudes. However, the year-to-year evolution of the Arctic sea ice cover is also characterized by significant fluctuations attributed to internal climate variability. It is unclear how the atmosphere will respond to a near-total retreat of summer Arctic sea ice, a reality that might occur in the foreseeable future. This study uses sensitivity experiments  with higher and lower horizontal resolution configurations of three global coupled climate models to investigate the local and remote atmospheric responses to a reduction in Arctic sea ice cover during the preceding summer. Recognizing that these responses likely depend on the model itself and on its horizontal resolution, and that the model’s internally-generated climate variability may obscure the atmospheric response, we design a protocol to compare each source separately. After imposing a 15-month albedo perturbation resulting in a sudden summer Arctic sea ice loss, the remote mid-latitude climate response has a very low signal-to-noise ratio such that internal climate variability dominates the uncertainty of the response, regardless of the atmospheric variable. Indeed, more than 28, 165 and 210 members are needed to detect a robust response in surface air temperature, precipitation and sea level pressure to sea ice loss in Europe, respectively. Finally, we find that horizontal resolution plays a secondary role in the uncertainty of the atmospheric response to substantial perturbation of Arctic sea ice. These findings suggest that even with higher resolution model configurations, it is important to have large ensemble sizes to increase the signal to noise ratio for the mid-latitude atmospheric response to sea ice changes.</p>


2018 ◽  
Vol 31 (22) ◽  
pp. 9193-9206 ◽  
Author(s):  
Russell Blackport ◽  
Paul J. Kushner

The role of extratropical ocean warming in the coupled climate response to Arctic sea ice loss is investigated using coupled atmosphere–ocean general circulation model (AOGCM) and uncoupled atmospheric-only (AGCM) experiments. Coupled AOGCM experiments driven by sea ice albedo reduction and greenhouse gas–dominated radiative forcing are used to diagnose the extratropical sea surface temperature (SST) response to sea ice loss. Sea ice loss is then imposed in AGCM experiments both with and without these extratropical SST changes, which are found to extend beyond the regions where sea ice is lost. Sea ice loss in isolation drives warming that is confined to the Arctic lower troposphere and only a weak atmospheric circulation response. When the extratropical SST response caused by sea ice loss is also included in the forcing, the warming extends into the Arctic midtroposphere during winter. This coincides with a stronger atmospheric circulation response, including an equatorward shift in the eddy-driven jet, a deepening of the Aleutian low, and an expansion of the Siberian high. Similar results are found whether the extratropical SST forcing is taken directly from the AOGCM driven by sea ice loss, or whether they are diagnosed using a two-parameter pattern scaling technique where tropical adjustment to sea ice loss is removed. These results suggest that AGCM experiments that are driven by sea ice loss and only local SST increases will underestimate the Arctic midtroposphere warming and atmospheric circulation response to sea ice loss, compared to AOGCM simulations and the real world.


Sign in / Sign up

Export Citation Format

Share Document