Validation of GIA models in north-east Greenland using densified GNSS measurements and refined estimates of present-day ice-mass changes

Author(s):  
Maria Theresia Kappelsberger ◽  
Undine Strößenreuther ◽  
Mirko Scheinert ◽  
Martin Horwath ◽  
Andreas Groh ◽  
...  

<p>Models of glacial-isostatic adjustment (GIA) exhibit large differences in north-east Greenland, reflecting uncertainties about glacial history and solid Earth rheology. The GIA uncertainties feed back to uncertainties in present-day mass-balance estimates from satellite gravimetry. We present results from repeated and continuous GNSS measurements which provide direct observables of the bedrock displacement. The repeated measurements were conducted within five measurement campaigns between 2008 and 2017. They reveal uplift rates in north-east Greenland in the range of 2.8 to 8.9 mm yr<sup>-1</sup>. We used the observed uplift rates to validate different GIA models in conjunction with estimates of the elastic load deformation induced by present-day ice-mass changes and ocean mass redistribution. To determine present-day ice-mass changes for both the Greenland Ice Sheet and the peripheral glaciers, we combined CryoSat-2 satellite altimetry data with GRACE satellite gravimetry data. The different GIA models were consistently used in all processing steps. Our comparison between observed and predicted uplift rates clearly favours GIA models that show low rates (0.7 to 4.4 mm yr<sup>-1</sup> at the GNSS sites) over GIA models with higher rates of up to 8.3 mm yr<sup>-1</sup>. Applying the correction predicted by the GIA model favoured in north-east Greenland we estimate an ice-mass loss of 233 ± 43 Gt yr<sup>-1</sup> for entire Greenland (including peripheral glaciers) over the period July 2010 to June 2017.</p>

2013 ◽  
Vol 7 (5) ◽  
pp. 1499-1512 ◽  
Author(s):  
I. Sasgen ◽  
H. Konrad ◽  
E. R. Ivins ◽  
M. R. Van den Broeke ◽  
J. L. Bamber ◽  
...  

Abstract. We present regional-scale mass balances for 25 drainage basins of the Antarctic Ice Sheet (AIS) from satellite observations of the Gravity and Climate Experiment (GRACE) for time period January 2003 to September 2012. Satellite gravimetry estimates of the AIS mass balance are strongly influenced by mass movement in the Earth interior caused by ice advance and retreat during the last glacial cycle. Here, we develop an improved glacial-isostatic adjustment (GIA) estimate for Antarctica using newly available GPS uplift rates, allowing us to more accurately separate GIA-induced trends in the GRACE gravity fields from those caused by current imbalances of the AIS. Our revised GIA estimate is considerably lower than previous predictions, yielding an estimate of apparent mass change of 53 ± 18 Gt yr−1. Therefore, our AIS mass balance of −114 ± 23 Gt yr−1 is less negative than previous GRACE estimates. The northern Antarctic Peninsula and the Amundsen Sea sector exhibit the largest mass loss (−26 ± 3 Gt yr−1 and −127 ± 7 Gt yr−1, respectively). In contrast, East Antarctica exhibits a slightly positive mass balance (26 ± 13 Gt yr−1), which is, however, mostly the consequence of compensating mass anomalies in Dronning Maud and Enderby Land (positive) and Wilkes and George V Land (negative) due to interannual accumulation variations. In total, 6% of the area constitutes about half the AIS imbalance, contributing 151 ± 7 Gt yr−1 (ca. 0.4 mm yr−1) to global mean sea-level change. Most of this imbalance is caused by ice-dynamic speed-up expected to prevail in the near future.


Author(s):  
Henrik Højmark Thomsen ◽  
Niels Reeh ◽  
Ole B. Olesen ◽  
Carl Egede Bøggilde ◽  
Wolfgang Starzer ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Højmark Thomsen, H., Reeh, N., Olesen, O. B., Egede Bøggilde, C., Starzer, W., Weidick, A., & Higgins, A. K. (1997). The Nioghalvfjerdsfjorden glacier project, North-East Greenland: a study of ice sheet response to climatic change. Geology of Greenland Survey Bulletin, 176, 95-103. https://doi.org/10.34194/ggub.v176.5073 _______________ Glaciological research was initiated in 1996 on the floating glacier tongue filling Nioghalvfjerdsfjorden in NorthEast Greenland (Fig. 1), with the aim of acquiring a better understanding of the response of the Greenland ice sheet (Inland Ice) to changing climate, and the implications for future sea level. The research is part of a three year project (1996–98) to advance research into the basic processes that contribute to changes in the ocean volume with a changing climate. Five nations are participants in the project, which is supported by the European Community (EC) Environment and Climate Programme. The Geological Survey of Denmark and Greenland (GEUS) and the Danish Polar Center are the Danish partners in the project, both with integrated research themes concentrated on and around Nioghalvfjerdsfjorden.


2009 ◽  
Vol 24 (3) ◽  
pp. 279-293 ◽  
Author(s):  
Jeffrey Evans ◽  
Colm Ó Cofaigh ◽  
Julian A. Dowdeswell ◽  
Peter Wadhams

2020 ◽  
Author(s):  
Ole Zeising ◽  
Daniel Steinhage ◽  
Niklas Neckel ◽  
Julia Christmann ◽  
Veit Helm ◽  
...  

<p>The 79°N Glacier (79NG) in northeast Greenland, one of the last glaciers in Greenland with a floating ice tongue, plays a crucial role for buttressing the North-East Greenland Ice Stream (NEGIS). Remote-sensing studies indicate high basal melt rates (> 50 m/a) near the grounding line but these methods are limited by the hinge zone, where the floating ice is not in hydrostatic equilibrium. As part of the Greenland Ice Sheet Ocean Interaction (GROCE) project, we have performed a dense grid of repeated measurements with a phase-sensitive radio echo sounder (pRES) accompanied with autonomous pRES (ApRES) stations to estimate basal melt rates focusing on the hinge zone of 79NG. For analysing the pRES measurements, we additionally used ice thickness information derived from AWI’s ultra-wideband radar (UWB) revealing steep channels at the base. The estimated basal melt rates downstream the hinge zone are approximately the same as satellite-derived melt rates. In the hinge zone we found by far larger basal melt rates exceeding 100 m/a next to basal channels.</p>


1967 ◽  
Vol 6 (48) ◽  
pp. 795-803 ◽  
Author(s):  
Steven J. Mock

All available mean annual accumulation data on the Greenland ice sheet (excluding the Thule peninsula) have been collected and analyzed using multiple regression techniques to develop equations capable of predicting mean annual accumulation. The analysis was carried out for north Greenland, south Greenland, and for the transition zone between the two major regions. The resulting equations show that mean annual accumulation can be predicted from the independent parameters latitude, longitude and elevation. The patterns of accumulation are shown in a series of isohyetal (contours of accumulation in terms of water) maps. The major feature shown is a well defined asymmetry in accumulation; a pronounced east-slope maximum in south Greenland and an equally pronounced west-slope maximum in north Greenland. Poleward of lat. 69° N., isohyets decrease in elevation to the north. Mean annual accumulation ranges from >90 g./cm.2in south-east Greenland to <15 g./cm.2in north-east Greenland. A brief discussion of mass balance estimates of the Greenland ice sheet and of the relevance of this study to them is included.


2021 ◽  
Author(s):  
Paul D. Bons ◽  
Tamara de Riese ◽  
Steven Franke ◽  
Maria-Gema Llorens ◽  
Till Sachau ◽  
...  

<p>The prominent North East Greenland Ice Stream (NEGIS) is an exceptionally large ice stream in the Greenland Ice sheet. It is over 500 km long, originates almost at the central ice divide, and contributes significantly to overall ice drainage from the Greenland Ice sheet. Surface velocities in the inland part of the ice stream are several times higher inside NEGIS than in the adjacent ice sheet. Modelling NEGIS is still a challenge as it remains unclear what actually causes and controls the ice stream.</p><p>An elevated geothermal heat flux is one of the factors that are being considered to trigger or drive the fast flow inside NEGIS. Unfortunately, the geothermal heat flux below NEGIS and its upstream area is poorly constrained and estimates vary from close to the global average for continental crust (ca. 60 mW/m<sup>2</sup>) to values as high as almost 1000 mW/m<sup>2</sup>. The latter would cause about 10 cm/yr of melting at the base of the ice sheet.</p><p>We present a brief survey of global geothermal heat flux data, especially from known hotspots, such as Iceland and Yellowstone. Heat fluxes in these areas that are known to be among the hottest on Earth rarely, if ever, exceed 300 mW/m<sup>2</sup>. A plume hotspot or its trail can therefore not cause heat fluxes at the high end of the suggested range. Other potential factors, such as hydrothermal fluid flow and radiogenic heat, also cannot raise the heat flux significantly. We conclude that the heat flux at NEGIS is very unlikely to exceed 100-150 mW/m<sup>2</sup>, and future modelling studies on NEGIS should thus be mindful of implementing realistic geothermal heat flux values. If NEGIS is not the result of an exceptionally high heat flux, we are left with the exciting challenge to find the true trigger of this fascinating structure.</p>


1967 ◽  
Vol 6 (48) ◽  
pp. 795-803 ◽  
Author(s):  
Steven J. Mock

All available mean annual accumulation data on the Greenland ice sheet (excluding the Thule peninsula) have been collected and analyzed using multiple regression techniques to develop equations capable of predicting mean annual accumulation. The analysis was carried out for north Greenland, south Greenland, and for the transition zone between the two major regions. The resulting equations show that mean annual accumulation can be predicted from the independent parameters latitude, longitude and elevation. The patterns of accumulation are shown in a series of isohyetal (contours of accumulation in terms of water) maps. The major feature shown is a well defined asymmetry in accumulation; a pronounced east-slope maximum in south Greenland and an equally pronounced west-slope maximum in north Greenland. Poleward of lat. 69° N., isohyets decrease in elevation to the north. Mean annual accumulation ranges from >90 g./cm.2 in south-east Greenland to <15 g./cm.2 in north-east Greenland. A brief discussion of mass balance estimates of the Greenland ice sheet and of the relevance of this study to them is included.


2012 ◽  
Vol 6 (5) ◽  
pp. 3703-3732 ◽  
Author(s):  
I. Sasgen ◽  
H. Konrad ◽  
E. R. Ivins ◽  
M. R. van den Broeke ◽  
J. L. Bamber ◽  
...  

Abstract. We present regional-scale mass balances for 25 drainage basins of the Antarctic Ice Sheet (AIS) from satellite observations of the Gravity and Climate Experiment (GRACE) for the years 2002–2011. Satellite gravimetry estimates of the AIS mass balance are strongly influenced by mass movement in the Earth interior caused by ice advance and retreat during the last glacial cycle. Here, we develop an improved glacial-isostatic adjustment (GIA) estimate for Antarctica using newly available GPS uplift rates, allowing us to more accurately separate GIA-induced trends in the GRACE gravity fields from those caused by current imbalances of the AIS. Our revised GIA estimate is considerably lower than previous predictions, yielding an (upper) estimate of apparent mass change of 48 ± 18 Gt yr−1. Therefore, our AIS mass balance of −103 ± 23 Gt yr−1 is considerably less negative than previous GRACE estimates. The Northern Antarctic Peninsula and the Amundsen Sea Sector exhibit the largest mass loss (−25 ± 6 Gt yr−1 and −126 ± 11 Gt yr−1, respectively). In contrast, East Antarctica exhibits a slightly positive mass balance (19 ± 16 Gt yr−1), which is, however, mostly the consequence of compensating mass anomalies in Dronning Maud and Enderby Land (positive) and Wilkes and George V Land (negative) due to interannual accumulation variations. In total, 7% of the area constitute more than half of the AIS imbalance (53%), contributing −151 ± 9 Gt yr−1 to global mean sea-level change. Most of this imbalance is caused by long-term ice-dynamic speed up expected to prevail in the future.


2021 ◽  
Vol 11 (3) ◽  
pp. 1115
Author(s):  
Aleš Bezděk ◽  
Jakub Kostelecký ◽  
Josef Sebera ◽  
Thomas Hitziger

Over the last two decades, a small group of researchers repeatedly crossed the Greenland interior skiing along a 700-km long route from east to west, acquiring precise GNSS measurements at exactly the same locations. Four such elevation profiles of the ice sheet measured in 2002, 2006, 2010 and 2015 were differenced and used to analyze the surface elevation change. Our goal is to compare such locally measured GNSS data with independent satellite observations. First, we show an agreement in the rate of elevation change between the GNSS data and satellite radar altimetry (ERS, Envisat, CryoSat-2). Both datasets agree well (2002–2015), and both correctly display local features such as an elevation increase in the central part of the ice sheet and a sharp gradual decline in the surface heights above Jakobshavn Glacier. Second, we processed satellite gravimetry data (GRACE) in order for them to be comparable with local GNSS measurements. The agreement is demonstrated by a time series at one of the measurement sites. Finally, we provide our own satellite gravimetry (GRACE, GRACE-FO, Swarm) estimate of the Greenland mass balance: first a mild decrease (2002–2007: −210 ± 29 Gt/yr), then an accelerated mass loss (2007–2012: −335 ± 29 Gt/yr), which was noticeably reduced afterwards (2012–2017: −178 ± 72 Gt/yr), and nowadays it seems to increase again (2018–2019: −278 ± 67 Gt/yr).


Sign in / Sign up

Export Citation Format

Share Document