hinge zone
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 21)

H-INDEX

11
(FIVE YEARS 0)

2022 ◽  
Vol 961 (1) ◽  
pp. 012069
Author(s):  
Mustafa Kareem Hamzah ◽  
Raizal Saifulnaz M. Rashid ◽  
Farzad Hejazi

Abstract The recent ground motion results indicated that the RC buildings are required to be retrofitted by different strengthening techniques. Nowadays, the external strengthening gain interest since its easy, cost effective and not required redesign of buildings. The CFRP sheets are suitable solution and utilized by a number of researchers. However, the numerical cyclic performance of connection strengthened with different thicknesses of CFRP need to be well investigated. This study assessed the performance of RC exterior beam column connection strengthened with CFRP sheets First, two grades of concrete are utilized to be control specimens, normal concrete compressive strength (C20) and high concrete compressive strength (C50) then, the specimens are retrofitted with different thicknesses (1.2, 2.4, 3.6mm) of CFRP sheets. The stresses and damage states showed the importance of connection retrofitting. The CFRP shift the plastic hinge zone away from the panel zone. Furthermore, the results demonstrated that by increase of CFRP thickness the connection resistance will be improved. The comparison between the hysteresis curves demonstrated that the yield and ultimate loading were enhanced for strengthened connection for both concrete grades and the incremental in thicknesses also increase them. The outputs also exhibited that the stiffness and ductility has increased for retrofitted specimens indicating that the CFRP comprehensively overcome the applied cyclic loading and the beam column connection is able to resist such type of loading.


MAUSAM ◽  
2021 ◽  
Vol 43 (4) ◽  
pp. 371-378
Author(s):  
V. P. SINGH ◽  
D. SHANKER

The tectonic activity of the Bengal basin for years 1850-1988 of seismicity and 16 years (1970-1985) of P-wave first motion data have been studied. The seismicity studies reveal three seismic belts such as Dhubri fault (striking N-S), Calcutta hinge zone (striking NE-SW) and the central region of the Bengal basin (striking NW-SE). Dauki fault is comparatively less seismically active than Dhubri fault. The seismicity of Dhubri fault and Calcutta hinge zone are confined to limited extension. The seismic activity along the central portion of the Bengal basin is extending from the Himalayan region (27°N, 88.5°E) to eastern plate margin (23.8°N,  92°E). .This appears to be a tectonic belt and is associated with the northeast drifting of Indian plate. The focal, mechanism studies reveal thrust faulting showing the stresses to be perpendicular to the proposed belt.  


Author(s):  
Pengfei Li ◽  
Min Sun ◽  
Tserendash Narantsetseg ◽  
Fred Jourdan ◽  
Wanwan Hu ◽  
...  

To understand the origin of curved subduction zones has been one of the major challenges in plate tectonics. The Mongol-Okhotsk Orogen in Central Asia is characterized by the development of a U-shaped oroclinal structure that was accompanied by the continuous subduction of the Mongol-Okhotsk oceanic plate. Therefore, it provides a natural laboratory to understand why and how a subduction system became tightly curved. In this study, we provide the first structural observation around the hinge of the Mongolian Orocline (the Zag zone in Central Mongolia), with an aim to constrain the oroclinal geometry and to link hinge zone structures with the origin of the orocline. Our results show that rocks in the Zag zone are characterized by the occurrence of a penetrative foliation that is commonly subparallel to bedding. Both bedding and dominant fabric in the Zag zone are steeply dipping, and their strike orientations in a map view follow a simple curve around the hinge of the Mongolian Orocline, thus providing the first structural constraint for 3D geometry of the orocline. A secondary penetrative fabric parallel to the axial plane of the orocline was not observed, indicating a low degree of orogen-parallel shortening during oroclinal bending. Combining with available geological and geophysical data, we conclude that the Mongolian Orocline was developed in a period of Permian to Jurassic, and its origin was linked to the subduction of the Mongol-Okhotsk oceanic slab. We consider that the low-strain oroclinal bending likely resulted from the along-strike variation in trench retreat, which was either triggered by the negative buoyancy of the Mongol-Okhotsk oceanic slab, or driven by the relative rotation of the Siberian and North China cratons. Our results shed a light on 3D geometry and geodynamic mechanisms of large-scale oroclinal bending in an accretionary orogen.


2021 ◽  
Vol 245 ◽  
pp. 112776
Author(s):  
Dongzhi Guan ◽  
Zixuan Chen ◽  
Jiabin Liu ◽  
Zhiyi Lin ◽  
Zhengxing Guo

2021 ◽  
Author(s):  
Tadesse Gemeda Wakjira ◽  
M. Shahria Alam ◽  
Usama Ebead

Abstract Concrete bridge piers reinforced with conventional steel bars experience large permanent (residual) deformation that may lead to uneconomical repair or demotion of bridges due to their non-functionality post strong seismic event. Thus, sufficiently ductile materials are required to reinforce concrete bridge piers in the plastic hinge zone in order to limit their permanent damage and deformation post-earthquake event. Previous studies showed that partial replacement of conventional steel reinforcement bars with superelastic shape memory alloy (SMA) bars in the plastic hinge zone of concrete bridge piers has the capacity to limit the residual deformation owing to the superior self-centering properties of SMA bars. In this study, the efficacy of hybrid SMA/steel reinforcement for hollow section concrete bridge piers under combined reverse cyclic and constant axial loading is numerically investigated for the first time. The responses of the piers were evaluated in terms of different performance indices including hysteretic characteristics, residual deformation, energy dissipation capacity, and self-centering capacity. A sensitivity analysis was used to explore the main effects of key design parameters and their interactions on each performance index at four damage states, namely, complete, extensive, moderate, and slight damage states. The results of this study demonstrate the effectiveness of hybrid SMA/steel reinforcement for enhancing the seismic behavior of hollow section concrete bridge piers.


2021 ◽  
Vol 11 (15) ◽  
pp. 6696
Author(s):  
Min-Jun Kim ◽  
Bum-Sik Lee ◽  
Dong-Hwan Kim ◽  
Sang-Pil Han ◽  
Kil-Hee Kim

In general, the lateral confinement capacity of RC columns is influenced by the strength and configuration of transverse reinforcement. In this study, performed antisymmetric flexural moment experiments that simulated seismic loads, with the configuration and yield strength of the transverse reinforcement of RC square columns as main variables. The eight specimens were square cross-sections measuring 250 × 250 mm, and the lateral confinement effect in relation to main variables was examined by inducing flexural failure in the plastic hinge zone under a shear span-to-depth ratio (a/D) of 3.0. Transverse reinforcements comprised a square and octagonal S-series and tie-based H-series. The yield strengths of the transverse reinforcements were 453 MPa and 1053 MPa, respectively. Compared to the H-series, the S-series, whose configuration of transverse reinforcement is closer to a circular form, exhibited more prominent ductile behavior after flexural yield with increasing yield strength of transverse reinforcement, which indicates greater lateral confinement.


Biomimetics ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 43
Author(s):  
Mona Mühlich ◽  
Edith A. González ◽  
Larissa Born ◽  
Axel Körner ◽  
Lena Schwill ◽  
...  

This paper aims to define the influencing design criteria for compliant folding mechanisms with pneumatically actuated hinges consisting of fiber-reinforced plastic (FRP). Through simulation and physical testing, the influence of stiffness, hinge width as well as variation of the stiffness, in the flaps without changing the stiffness in the hinge zone, was evaluated. Within a finite element model software, a workflow was developed for simulations, in order to infer mathematical models for the prediction of mechanical properties and the deformation behavior as a function of the aforementioned parameters. In conclusion, the bending angle increases with decreasing material stiffness and with increasing hinge width, while it is not affected by the flap stiffness itself. The defined workflow builds a basis for the development of a predictive model for the deformation behavior of FRPs.


2021 ◽  
Vol 13 (10) ◽  
pp. 1934
Author(s):  
Soha Hassan ◽  
Mohamed Sultan ◽  
Mohamed Sobh ◽  
Mohamed S. Elhebiry ◽  
Khaled Zahran ◽  
...  

Interpretations of the tectonic setting of the Nile Delta of Egypt and its offshore extension are challenged by the thick sedimentary cover that conceals the underlying structures and by the paucity of deep seismic data and boreholes. A crustal thickness model, constrained by available seismic and geological data, was constructed for the Nile Delta by inversion of satellite gravity data (GOCO06s), and a two-dimensional (2D) forward density model was generated along the Delta’s entire length. Modelling results reveal the following: (1) the Nile Delta is formed of two distinctive crustal units: the Southern Delta Block (SDB) and the Northern Delta Basin (NDB) separated by a hinge zone, a feature widely reported from passive margin settings; (2) the SDB is characterized by an east–west-trending low-gravity (~−40 mGal) anomaly indicative of continental crust characteristics (depth to Moho (DTM): 36–38 km); (3) the NDB and its offshore extension are characterized by high gravity anomalies (hinge zone: ~10 mGal; Delta shore line: >40 mGal; south Herodotus Basin: ~140 mGal) that are here attributed to crustal thinning and stretching and decrease in DTM, which is ~35 km at the hinge zone, 30–32 km at the shoreline, and 22–20 km south of the Herodotus Basin; and (4) an apparent continuation of the east-northeast–west-southwest transitional crust of the Nile Delta towards the north-northeast–south-southwest-trending Levant margin in the east. These observations together with the reported extensional tectonics along the hinge zone, NDB and its offshore, the low to moderate seismic activity, and the absence of volcanic eruptions in the Nile Delta are all consistent with the NDB being a non-volcanic passive margin transition zone between the North African continental crust (SDB) and the Mediterranean oceanic crust (Herodotus Basin), with the NDB representing a westward extension of the Levant margin extensional transition zone.


Sign in / Sign up

Export Citation Format

Share Document