Determining optimum wave velocity from sparse CMP automatically by coupling POCS interpolation and NMO correction: application to array antenna GPR data collected during in-situ infiltration test

Author(s):  
Koki Oikawa ◽  
Hirotaka Saito ◽  
Seiichiro Kuroda ◽  
Kazunori Takahashi

<p>As an array antenna ground penetrating radar (GPR) system electronically switches any antenna combinations sequentially in milliseconds, multi-offset gather data, such as common mid-point (CMP) data, can be acquired almost seamlessly. However, due to the inflexibility of changing the antenna offset, only a limited number of scans can be obtained. The array GPR system has been used to collect time-lapse GPR data, including CMP data during the field infiltration experiment (Iwasaki et al., 2016). CMP data obtained by the array GPR are, however, too sparse to obtain reliable velocity using a standard velocity analysis, such as semblance analysis. We attempted to interpolate the sparse CMP data based on projection onto convex sets (POCS) algorithm (Yi et al., 2016) coupled with NMO correction to automatically determine optimum EM wave velocity. Our previous numerical study showed that the proposed method allows us to determine the EM wave velocity during the infiltration experiment.</p><p>The main objective of this study was to evaluate the performance of the proposed method to interpolate sparse array antenna GPR CMP data collected during the in-situ infiltration experiment at Tottori sand dunes. The interpolated CMP data were then used in the semblance analysis to determine the EM wave velocity, which was further used to compute the infiltration front depth. The estimated infiltration depths agreed well with independently obtained depths. This study demonstrated the possibility of developing an automatic velocity analysis based on POCS interpolation coupled with NMO correction for sparse CMP collected with array antenna GPR.</p>

Geophysics ◽  
2021 ◽  
pp. 1-37
Author(s):  
Hirotaka Saito ◽  
Seiichiro Kuroda ◽  
Toshiki Iwasaki ◽  
Jacopo Sala ◽  
Haruyuki Fujimaki

Non-destructive and non-invasive visualization and quantification of dynamic subsurface hydrological processes are needed. Using a ground penetrating radar (GPR) antenna array, time-lapse common-offset gather (COG) and common mid-point (CMP) data can be collected by fixing the antenna at a given location when scanning subsurface. This study aims to determine wetting front depths continuously during a field infiltration experiment by estimating electromagnetic (EM) wave velocities at given elapsed times using ground penetrating radar (GPR) antenna array data. A surface GPR antenna array system, consisting of 10 transmitters (Tx) and 11 receivers (Rx), that can scan each Tx-Rx combination in 10 s at a millisecond scale was used to acquire all 110 Rx-Tx combinations in approximately 1.5 s. The field infiltration experiment was conducted at an experimental field near the Tottori Sand Dunes in Japan. Using the estimated EM wave velocity from the CMP data, the depth to the wetting front was computed every minute. The estimated wetting front arrival time agreed with the time at which a sudden increase in the moisture sensor output was observed at a depth from 20 cm and below. This study demonstrated that time-lapsed CMP data collected with the GPR antenna array system could be used to estimate EM wave velocities continuously during the infiltration. The GPR antenna array was capable of accurate and quantitative tracking of the wetting front.


2021 ◽  
Author(s):  
Ranajit Ghose

<p>Shear waves are uniquely informative because of their vector nature – with both polarization and propagation of shear waves being useful sources of information, their sensitivity to <em>in-situ</em> stress and grain-to-grain contact, and also because of the low velocity of shear waves in relatively soft formations - offering short wavelength and hence high resolution. Decimetre-scale resolution found in shear-wave reflection data in soft soil has resulted in new application possibilities. Medium anisotropy extracted from multi-component shear-wave data has provided information on natural symmetries in small-strain rigidity and/or stress in the shallow subsurface, which are caused by factors that are of great interest to the engineers. AVO response of shear waves at near-surface soil-layer boundaries has also proven to be useful for extracting local information in the subsoil.</p><p>In the present research we have looked at the sensitivity of shear-wave velocity and the underlying physics in both saturated and unsaturated near-surface soils, and if these can practically be used for monitoring soil dynamics and soil stability. Time-lapse changes in shear-wave velocity could be used to monitor changes in <em>in-situ</em> stress in the saturated sands. More recently, we have developed methodologies to invert time-lapse shear-wave velocity information together with geo-electrical information to obtain<em> in-situ</em> values of water saturation and suction in different partially saturated soil units. Incorporation of this information in a spatially varying sense is imperative in order to make assessment of stability of unsaturated soil slopes subjected to rainfall, modelling flooding and sediment flows due to increased surface runoff and erosion, sustainable agriculture through in-situ water moisture monitoring, and modelling pollutant transport through soils.</p>


2013 ◽  
Vol 405-408 ◽  
pp. 470-473
Author(s):  
Sheng Jie Di ◽  
Ming Yuan Wang ◽  
Zhi Gang Shan ◽  
Hai Bo Jia

A procedure for evaluating liquefaction resistance of soils based on the shear wave velocity measurements is outlined in the paper. The procedure follows the general formal of the Seed-Idriss simplified procedure. In addition, it was developed following suggestions from industry, researchers, and practitioners. The procedure correctly predicts moderate to high liquefaction potential for over 95% of the liquefaction case histories. The case study for the site of offshore wind farm in Jiangsu province is provided to illustrate the application of the proposed procedure. The feature of the soils and the shear wave velocity in-situ tested in site are discussed and the liquefaction potential of the layer is evaluated. The application shows that the layers of the non-cohesive soils in the depths 3-11m may be liquefiable according to the procedure.


First Break ◽  
2017 ◽  
Vol 35 (8) ◽  
Author(s):  
Atsushi Suzaki ◽  
Shohei Minato ◽  
Ranajit Ghose ◽  
Chisato Konishi ◽  
Naoki Sakai

Sign in / Sign up

Export Citation Format

Share Document