ultrasonic measurements
Recently Published Documents


TOTAL DOCUMENTS

890
(FIVE YEARS 83)

H-INDEX

38
(FIVE YEARS 3)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Nikolay V. Kozyrev ◽  
Vladimir V. Gordeev

A high-temperature equation of state (EoS) for the fcc phase of solid lead and liquid lead was developed herein using experimental data on thermodynamic properties, volumetric thermal expansion, compressibility, temperature-dependent bulk modulus, and sound velocity from ultrasonic measurements and melting curve. The whole totality of experimental data was optimized using the temperature-dependent Murnaghan EoS over a pressure range of 0–130 kbar. The temperature dependences of thermodynamic and thermophysical parameters were described herein using an expanded Einstein model. The resultant EoS describes well the whole set of available experimental data within measurement uncertainties of individual parameters.


2021 ◽  
Vol 79 (12) ◽  
pp. 1169-1178
Author(s):  
Dulip Samaratunga ◽  
Joseph Severino ◽  
Shant Kenderian

Ultrasonic longitudinal wave propagation is studied in out-of-autoclave (OoA) carbon fiber–reinforced polymer composite material with varying levels of porosity contents. A combination of cure pressures and a solvent is used to produce specimens with void contents in the range of 0% to 22%. Ultrasonic measurements are made in through-transmission mode, and the data is processed to study various aspects of wave interaction with porosity in OoA specimens. The specimens with a wide range of void contents have enabled the study of broader trends of ultrasonic center frequency, wave velocity, and attenuation with respect to porosity. Results show ultrasonic center frequency and wave velocity are decreased linearly as the void content increases. The relationship of ultrasonic wave attenuation can be approximated by a logarithmic relationship when considering the full range of void content studied. Strength measurements of specimens with varying void contents are made using the flatwise tensile (FWT) test. It is observed that the strength rapidly decreases with increasing porosity. Correlations made between FWT strength, ultrasonic wave velocity, and attenuation are best described by logarithmic relationships. The data shows a potential for inferring strength knockdowns due to the presence of porosity based on ultrasonic measurements.


2021 ◽  
Vol 30 (4) ◽  
pp. 679-692
Author(s):  
A. S. Strelnik ◽  
S. V. Dvoinishnikov ◽  
V. G. Meledin ◽  
V. V. Rakhmanov ◽  
G. V. Bakakin ◽  
...  

Author(s):  
Darshana Rodric

Abstract: Ultrasonic measurements of samarium soaps (palmitate and myristate) have been carried out in a mixture of benzene and DMSO (70%-30% v/v) to determine the critical micellar concentration(CMC), soap-solvent interaction and various acoustic parameters. The results show that ultrasonic velocity, intermolecular free length, adiabatic compressibility, adiabatic molar volume and apparent molar compressibility decrease while specific acoustic impedance, relative association and solvation number increase with increase in soap concentration. The results of ultrasonic measurements have also been explained in terms of well-known equations. Keywords: Ultrasonic measurements, molecular interactions, samarium soaps, compressibility, critical micellar concentration(CMC).


2021 ◽  
pp. 1055-1061
Author(s):  
Pejoohan Tavassoti ◽  
Taher H. Ameen ◽  
Hassan Baaj ◽  
Giovanni Cascante

2021 ◽  
Vol 11 (15) ◽  
pp. 7065
Author(s):  
Masaru Nagaso ◽  
Joseph Moysan ◽  
Christian Lhuillier ◽  
Jean-Philippe Jeannot

The simulation of the propagation of ultrasonic waves in a moving fluid will improve the efficiency of the ultrasonic flow monitoring and that of the in-service monitoring for various reactors in several industries. The most recent simulations are mostly limited to 3D representations of the insonified volume but without really considering the temporal aspect of the flow. The advent of high-performance computing (HPC) now makes it possible to propose the first 4D simulations, with the representation of the inspected medium evolving over time. This work is based on a highly accurate double simulation. A first computational fluid dynamics (CFD) simulation, performed in previous work, described the fluid medium resulting from the mixing of hot jets in a cold opaque fluid. There have been many sensor developments over the years in this domain, as ultrasounds are the only method able to give information in an opaque medium. The correct design of these sensors, as well as the precise and confident analysis of their measurements, will progress with the development of the modeling of wave propagation in such a medium. An important parameter to consider is the flow temperature description, as a temperature gradient in the medium deflects the wave path and may sometimes cause its division. We develop a 4D wave propagation simulation in a very realistic, temporally fluctuating medium. A high-performance simulation is proposed in this work to include an ultrasonic source within the medium and to calculate the wave propagation between a transmitter and a receiver. The analysis of the wave variations shows that this through-transmission setup can track the jet mixing time variations. The steps needed to achieve these results are described using the spectral-element-based numerical tool SPECFEM3D. It is shown that the low-frequency fluctuation of the liquid metal flow can be observed using ultrasonic measurements.


2021 ◽  
Author(s):  
Mohamed Subair Syed Akbar Ali ◽  
Mato Pavlovic ◽  
Prabhu Rajagopal

Abstract Additive Manufacturing (AM) is increasingly being considered for fabrication of components with complex geometries in various industries such as aerospace and healthcare. Control of surface roughness of components is thus a crucial aspect for more widespread adoption of AM techniques. However, estimating the internal (or ‘far-side’) surface roughness of components is a challenge, and often requires sophisticated techniques such as X-ray computed tomography, which are difficult to implement online. Although ultrasound could potentially offer a solution, grain noise and inspection surface conditions complicate the process. This paper studies the feasibility of using Artificial Intelligence (AI) in conjunction with ultrasonic measurements for rapid estimation of internal surface roughness in AM components, using numerical simulations. In the first models reported here, a pulse-echo configuration is assumed, whereby a specimen sample with rough surfaces is insonified with bulk ultrasonic waves and the backscatter is used to generate A-scans. Simulations are carried out for various combinations of the model parameters, yielding a large number of such A-scans. A neural network algorithm is then created and trained on a subset of the datasets so generated using simulations, and later used to predict the roughness from the rest. The results demonstrate the immense potential of this approach in inspection automation for rapid roughness assessments in AM components, based on ultrasonic measurements.


2021 ◽  
Vol 15 (7) ◽  
pp. 3507-3521
Author(s):  
Sebastian Hellmann ◽  
Melchior Grab ◽  
Johanna Kerch ◽  
Henning Löwe ◽  
Andreas Bauder ◽  
...  

Abstract. The crystal orientation fabric (COF) in ice cores provides detailed information, such as grain size and distribution and the orientation of the crystals in relation to the large-scale glacier flow. These data are relevant for a profound understanding of the dynamics and deformation history of glaciers and ice sheets. The intrinsic, mechanical anisotropy of the ice crystals causes an anisotropy of the polycrystalline ice of glaciers and affects the velocity of acoustic waves propagating through the ice. Here, we employ such acoustic waves to obtain the seismic anisotropy of ice core samples and compare the results with calculated acoustic velocities derived from COF analyses. These samples originate from an ice core from Rhonegletscher (Rhone Glacier), a temperate glacier in the Swiss Alps. Point-contact transducers transmit ultrasonic P waves with a dominant frequency of 1 MHz into the ice core samples and measure variations in the travel times of these waves for a set of azimuthal angles. In addition, the elasticity tensor is obtained from laboratory-measured COF, and we calculate the associated seismic velocities. We compare these COF-derived velocity profiles with the measured ultrasonic profiles. Especially in the presence of large ice grains, these two methods show significantly different velocities since the ultrasonic measurements examine a limited volume of the ice core, whereas the COF-derived velocities are integrated over larger parts of the core. This discrepancy between the ultrasonic and COF-derived profiles decreases with an increasing number of grains that are available within the sampling volume, and both methods provide consistent results in the presence of a similar amount of grains. We also explore the limitations of ultrasonic measurements and provide suggestions for improving their results. These ultrasonic measurements could be employed continuously along the ice cores. They are suitable to support the COF analyses by bridging the gaps between discrete measurements since these ultrasonic measurements can be acquired within minutes and do not require an extensive preparation of ice samples when using point-contact transducers.


Sign in / Sign up

Export Citation Format

Share Document