Unknown population of binary asteroids

2021 ◽  
Author(s):  
Dmitrii Vavilov ◽  
Benoit Carry ◽  
Anthony Lagain ◽  
Anthony Guimpier ◽  
Susan Conway ◽  
...  
Keyword(s):  
1984 ◽  
Vol 80 ◽  
pp. 387-392
Author(s):  
H. J. Schober

AbstractSince about ten years coordinated programs of photoelectric observations of asteroids are carried out to derive rotation rates and light curves. Quite a number of those asteroids exhibit features in their light curves, with similar characteristics as variable stars and especially eclipsing binaries. This would allow also an interpretation that there might be an evidence for the binary nature of some asteroids, based on observational hints. A few examples are given and a list of indications for the possible binary nature of asteroids, based on their light curve features, is presented.


2018 ◽  
Vol 477 (4) ◽  
pp. 5590-5604 ◽  
Author(s):  
Myriam Pajuelo ◽  
Mirel Birlan ◽  
Benoît Carry ◽  
Francesca E DeMeo ◽  
Richard P Binzel ◽  
...  

2020 ◽  
Author(s):  
Lauri Siltala ◽  
Mikael Granvik

<p>Asteroid mass determination is performed by analyzing an asteroid's gravitational interaction with another object, such as a spacecraft, Mars, a companion in the case of binary asteroids, or a separate asteroid during a close encounter. During asteroid-asteroid close encounters, perturbations caused by the masses of larger asteroids can be detected in the post-encounter orbits of the smaller test asteroid involved in such an encounter. This can be described as an inverse problem where the aim is to fit six orbital elements for each asteroid and mass(es) for the perturbing asteroid(s), for a total of 13 parameters at minimum unless more asteroid-asteroid encounters are modeled simultaneously.<br /><br />To solve this inverse problem, which is traditionally done with least-squares methods, we have implemented a Markov-chain Monte Carlo (MCMC) based solution and recently (Siltala & Granvik 2020) reported, among others, significantly lower than expected masses and densities for the asteroid (16) Psyche in particular. Psyche is an interesting, and topical, object as it is the target of NASA's eponymous Psyche mission and is commonly thought to be of metallic or stony-iron composition, which our previous density estimates disagreed with. In our previous work our two separate mass estimates for Psyche were based on modeling encounters with two separate test asteroids in both cases. Since then we have further refined our mass estimate for Psyche by simultaneously using eight separate test asteroids for this object, significantly increasing the amount of observational data included on the model which, in turn, will narrow down the uncertainties of our results at the cost of additional model complexity. Here we report and discuss our latest results for the mass of Psyche based on this case and compute corresponding densities based on existing literature values for the volume. We obtain a mass of (0.972 ± 0.148) * 10^-11 solar masses for Psyche corresponding to a bulk density of (3.37 ± 0.58) g/cm³ which is higher than our previous results while remaining consistent with them considering the uncertainties involved. It still remains lower than other previous literature values. We compare our results to these previous literature values and briefly discuss possible physical implications of these results.<br /><br />In addition, due to previous interest from the scientific community, we have also computed mass estimates for Ceres and Vesta, both of which already have very precisely known masses from the Dawn mission. As such, our results for these two asteroids are not of direct scientific interest but they serve as an useful benchmark to verify that our algorithm provides realistic results as we have 'ground truth' values to compare our results to. We find that for both cases, our results are in line with those of Dawn.</p>


2012 ◽  
Vol 2012 (0) ◽  
pp. _S192021-1-_S192021-4
Author(s):  
Kaon ONOZAKI ◽  
Hiroaki YOSHIMURA

2012 ◽  
Vol 143 (3) ◽  
pp. 59 ◽  
Author(s):  
Julia Fang ◽  
Jean-Luc Margot
Keyword(s):  

2015 ◽  
Vol 10 (S318) ◽  
pp. 212-217
Author(s):  
E. V. Pitjeva ◽  
N. P. Pitjev

AbstractAn estimation of the mass of the main asteroid belt was made on the basis of the new version of EPM2014 ephemerides of the Institute of Applied Astronomy of Russian Academy of Sciences using about 800000 positional observations of planets and spacecraft. We obtained the individual estimations of masses of large asteroids from radar data, as well as estimates of the masses of asteroids by using known diameters and estimated average densities for the three taxonomic types (C, S, M), and used the known mass values of binary asteroids and asteroids to which spacecraft approached. A two-dimensional homogeneous annulus with dimensions corresponding observed width of the main asteroid belt (2.06 au and 3.27 au) was used instead of a previous massive one-dimensional ring for modeling total perturbations from small asteroids. The obtained value of the total mass of the main asteroid belt is (12.25 ± 0.19)10−10M⊙.


Sign in / Sign up

Export Citation Format

Share Document