scholarly journals Rotation periods of binary asteroids with large separations – Confronting the Escaping Ejecta Binaries model with observations

Icarus ◽  
2011 ◽  
Vol 212 (1) ◽  
pp. 167-174 ◽  
Author(s):  
D. Polishook ◽  
N. Brosch ◽  
D. Prialnik
2020 ◽  
Vol 501 (1) ◽  
pp. 483-490
Author(s):  
Jim Fuller

ABSTRACT In close binary stars, the tidal excitation of pulsations typically dissipates energy, causing the system to evolve towards a circular orbit with aligned and synchronized stellar spins. However, for stars with self-excited pulsations, we demonstrate that tidal interaction with unstable pulsation modes can transfer energy in the opposite direction, forcing the spins of the stars away from synchronicity, and potentially pumping the eccentricity and spin–orbit misalignment angle. This ‘inverse’ tidal process only occurs when the tidally forced mode amplitude is comparable to the mode’s saturation amplitude, and it is thus most likely to occur in main-sequence gravity mode pulsators with orbital periods of a few days. We examine the long-term evolution of inverse tidal action, finding the stellar rotation rate can potentially be driven to a very large or very small value, while maintaining a large spin–orbit misalignment angle. Several recent asteroseismic analyses of pulsating stars in close binaries have revealed extremely slow core rotation periods, which we attribute to the action of inverse tides.


1999 ◽  
Vol 29 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Quanfa Zhang ◽  
Kurt S Pregitzer ◽  
David D Reed

The General Land Office (GLO) survey notes (1840-1856) were used to examine the interaction among natural disturbance, vegetation type, and topography in the presettlement forests of the Luce District, an ecological unit of approximately 902 000 ha in the Upper Peninsula of Michigan, U.S.A. The surveyors recorded 104 fire and 126 windthrow incidences covering 3.1 and 2.8% of the total length of the surveyed lines, respectively. The rotation periods over the entire landscape were 480 years for fire and 541 years for windthrow, but these varied with vegetation type and topographic position. Fire occurred more frequently on southerly aspects and at elevations where pinelands were concentrated. The density of windthrow events increased with elevation and slope, with the highest occurrence on westerly aspects. Based on the estimated rotation periods, we calculated that 7.5, 24.4, and 68.1% of the presettlement forest were in the stand initiation, stem exclusion, and old forest (including both understory reinitiation and old growth) stages, respectively. Pinelands and mixed conifers were the major components in both the stand initiation (34.5 and 31.1%) and the stem exclusion stage (20.9 and 39.8%), while mixed conifers (39.3%) and northern hardwoods (34.7%) were the major old-forest cover types. The diverse mosaic of various successional stages generated by natural disturbance suggests a "shifting-mosaic" landscape in this region.


1993 ◽  
Vol 69 (6) ◽  
pp. 727-729 ◽  
Author(s):  
Horst Weisgerber

Investigations so far on the suitability of poplars for biomass production in short rotation periods in Germany were conducted almost exclusively with clones conceived for conventional cultivation. To introduce improved plant material, a special breeding program was implemented in Hann. Münden. It takes into consideration the most important criteria of suitability for the new form of land utilization. A report is given on findings so far from the realization of this program. Comprehensive basic plant material is available for European, North American and East Asian species from the sections Aigeiros, Leuce and Tacamahaca. Interspecific crossings are being carried out mainly in order to make the best possible use of combination and heterosis effects. A period of at least 20 years is necessary to develop new cultivars with high yield performance and yield stability. First results are presented on hybrids of species which are site-tolerant, resistant and particularly fast-growing at the juvenile phase. Plans to produce multiclonal varieties, each with 5 to 10 suitable clones with the same growing rhythm are in place. Special cultivation recommendations advocate clonal mixtures for each of the most important site units and for different rotation periods of from 2 to 5, 6 to 10 and more than 10 years. Key words: poplar, breeding, biomass, short rotation


2006 ◽  
Vol 2 (S236) ◽  
pp. 167-176 ◽  
Author(s):  
Petr Pravec ◽  
A. W. Harris ◽  
B. D. Warner

AbstractOf the nearly 3900 near-Earth asteroids (NEAs) known as of June 2006, 325 have estimated rotation periods, with most of those determined by lightcurve analysis led by a few dedicated programs. NEAs with diameters down to 10 meters have been sampled. Observed spin distribution shows a major changing point around diameter of 200 meters. Larger NEAs show a barrier against spins faster than 11 d−1 (period about 2.2 h) that shifts to slower rates (longer periods) with increasing lightcurve amplitude (i.e., with increasing equatorial elongation). The spin barrier is interpreted as a critical spin rate for bodies in a gravity regime; NEAs larger than 200 meters are predominantly bodies with tensile strength too low to withstand a centrifugal acceleration for rotation faster than the critical spin rate. The cohesionless spin barrier disappears at sizes less than 200 meters where most objects rotate too fast to be held together by self-gravitation only, so a cohesion is implied in the smaller NEAs.The distribution of NEA spin rates in the cohesionless size range (D0.2 km) is highly non-Maxwellian, suggesting that mechanisms other than just collisions have been at work. There is a pile up just in front of the barrier, at periods 2–3 h. It may be related to a spin up mechanism crowding asteroids to the barrier. An excess of slow rotators is observed at periods longer than 30 hours. A spin-down mechanism has no obvious lower limit on spin rate; periods as long as tens of days have been observed.Most NEAs appear to be in their basic spin states with rotation around principal axis with maximum moment of inertia. Tumbling objects (i.e., bodies in excited, non-principal axis rotation) are present and actually predominate among slow rotators with estimated damping timescales longer than the age of the solar system. A few tumblers observed among fast rotating coherent objects appear to be either more rigid or younger than the larger (cohesionless) tumblers.An abundant population of binary systems has been found among NEAs. The fraction of binaries among NEAs larger than 0.3 km has been estimated to be 15 ± 4%. Primaries of binary systems concentrate at fast spin rates (periods 2–3 h) and low amplitudes, i.e., they lie just below the cohesionless spin barrier. The total angular momentum content in binary systems suggests that they formed from parent bodies spinning at the critical rate. The fact that a very similar population of binaries has been found among small main belt asteroids suggests a binary formation mechanism that may not be related to close encounters with the terrestrial planets.


2011 ◽  
Vol 740 (2) ◽  
pp. 110 ◽  
Author(s):  
Marcel A. Agüeros ◽  
Kevin R. Covey ◽  
Jenna J. Lemonias ◽  
Nicholas M. Law ◽  
Adam Kraus ◽  
...  

Icarus ◽  
2018 ◽  
Vol 302 ◽  
pp. 330-342 ◽  
Author(s):  
C.G.A. Smith

2018 ◽  
Vol 620 ◽  
pp. A91 ◽  
Author(s):  
J. Ďurech ◽  
J. Hanuš

Context. In addition to stellar data, Gaia Data Release 2 (DR2) also contains accurate astrometry and photometry of about 14 000 asteroids covering 22 months of observations. Aims. We used Gaia asteroid photometry to reconstruct rotation periods, spin axis directions, and the coarse shapes of a subset of asteroids with enough observations. One of our aims was to test the reliability of the models with respect to the number of data points and to check the consistency of these models with independent data. Another aim was to produce new asteroid models to enlarge the sample of asteroids with known spin and shape. Methods. We used the lightcurve inversion method to scan the period and pole parameter space to create final shape models that best reproduce the observed data. To search for the sidereal rotation period, we also used a simpler model of a geometrically scattering triaxial ellipsoid. Results. By processing about 5400 asteroids with at least 10 observations in DR2, we derived models for 173 asteroids, 129 of which are new. Models of the remaining asteroids were already known from the inversion of independent data, and we used them for verification and error estimation. We also compared the formally best rotation periods based on Gaia data with those derived from dense lightcurves. Conclusions. We show that a correct rotation period can be determined even when the number of observations N is less than 20, but the rate of false solutions is high. For N > 30, the solution of the inverse problem is often successful and the parameters are likely to be correct in most cases. These results are very promising because the final Gaia catalogue should contain photometry for hundreds of thousands of asteroids, typically with several tens of data points per object, which should be sufficient for reliable spin reconstruction.


2020 ◽  
Vol 640 ◽  
pp. A66 ◽  
Author(s):  
S. Freund ◽  
J. Robrade ◽  
P. C. Schneider ◽  
J. H. M. M. Schmitt

Aims. We revisit the X-ray properties of the main sequence Hyades members and the relation between X-ray emission and stellar rotation. Methods. As an input catalog for Hyades members, we combined three recent Hyades membership lists derived from Gaia DR2 data that include the Hyades core and its tidal tails. We searched for X-ray detections of the main sequence Hyades members in the ROSAT all-sky survey, and pointings from ROSAT, the Chandra X-Ray Observatory, and XMM-Newton. Furthermore, we adopted rotation periods derived from Kepler’s K2 mission and other resources. Results. We find an X-ray detection for 281 of 1066 bona fide main sequence Hyades members and provide statistical upper limits for the undetected sources. The majority of the X-ray detected stars are located in the Hyades core because of its generally smaller distance to the Sun. F- and G-type stars have the highest detection fraction (72%), while K- and M-type dwarfs have lower detection rates (22%). The X-ray luminosities of the detected members range from ∼2 × 1027 erg s−1 for late M-type dwarfs to ∼2 × 1030 erg s−1 for active binaries. The X-ray luminosity distribution functions formally differ for the members in the core and tidal tails, which is likely caused by a larger fraction of field stars in our Hyades tails sample. Compared to previous studies, our sample is slightly fainter in X-rays due to differences in the Hyades membership list used; furthermore, we extend the X-ray luminosity distribution to fainter luminosities. The X-ray activity of F- and G-type stars is well defined at FX/Fbol ≈ 10−5. The fractional X-ray luminosity and its spread increases to later spectral types reaching the saturation limit (FX/Fbol ≈ 10−3) for members later than spectral type M3. Confirming previous results, the X-ray flux varies by less than a factor of three between epochs for the 104 Hyades members with multiple epoch data, significantly less than expected from solar-like activity cycles. Rotation periods are found for 204 Hyades members, with about half of them being detected in X-rays. The activity-rotation relation derived for the coeval Hyades members has properties very similar to those obtained by other authors investigating stars of different ages.


Sign in / Sign up

Export Citation Format

Share Document