mass estimate
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 30)

H-INDEX

22
(FIVE YEARS 5)

Author(s):  
Shunsuke Katsuhara ◽  
Maki Yokomoto-Umakoshi ◽  
Hironobu Umakoshi ◽  
Yayoi Matsuda ◽  
Norifusa Iwahashi ◽  
...  

Abstract Purpose Prolonged exposure to pathological cortisol, as in Cushing’s syndrome causes various age-related disorders including sarcopenia. However, it is unclear whether mild cortisol excess, for example, accelerates sarcopenia due to aging or chronic stress. We performed a Mendelian randomization (MR) analysis to assess whether cortisol was causally associated with muscle strength and mass. Methods Three single nucleotide polymorphisms associated with plasma cortisol concentrations in the CORtisol NETwork consortium (n = 12,597) were used as instrumental variables. Summary statistics with traits of interest were obtained from relevant genome-wide association studies. For the primary analysis, we used the fixed-effects inverse-variance weighted analysis accounting for genetic correlations between variants. Results One standard deviation (SD) increase in cortisol was associated with SD reduction in grip strength (estimate, -0.032; 95% confidence interval [CI] -0.044 ~ -0.020; P = 3e-04), whole-body lean mass (estimate, -0.032; 95%CI, -0.046 ~ -0.017; P = 0.004), and appendicular lean mass (estimate, -0.031; 95%CI, -0.049 ~ -0.012; P = 0.001). The results were supported by the weighted-median analysis, with no evidence of pleiotropy in the MR-Egger analysis. The association of cortisol with grip strength and lean mass was observed in women but not in men. The association was attenuated after adjusting for fasting glucose in the multivariable MR analysis, which was the top mediator for the association in the MR-Bayesian model averaging analysis. Conclusion This MR study provides evidence for the association of cortisol with reduced muscle strength and mass, suggesting the impact of cortisol on the development of sarcopenia.


2021 ◽  
Vol 922 (1) ◽  
pp. 14
Author(s):  
Peter T. H. Pang ◽  
Ingo Tews ◽  
Michael W. Coughlin ◽  
Mattia Bulla ◽  
Chris Van Den Broeck ◽  
...  

Abstract In the past few years, new observations of neutron stars (NSs) and NS mergers have provided a wealth of data that allow one to constrain the equation of state (EOS) of nuclear matter at densities above nuclear saturation density. However, most observations were based on NSs with masses of about 1.4 M ⊙, probing densities up to ∼three to four times the nuclear saturation density. Even higher densities are probed inside massive NSs such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620, and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear physics multimessenger astrophysics constraints and derive updated constraints on the EOS describing the NS interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT 2017gfo, and the gamma-ray burst GRB 170817A, we are able to estimate the radius of a typical 1.4 M ⊙ NS to be 11.94 − 0.87 + 0.76 km at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of NSs and disfavors the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside NSs.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kyle Atkins-Weltman ◽  
Eric Snively ◽  
Patrick O'Connor

The ability to accurately and reliably estimate body mass of extinct taxa is a vital tool for interpreting the physiology and even behavior of long-dead animals. For this reason, paleontologists have developed many possible methods of estimating the body mass of extinct animals, with varying degrees of success. These methods can be divided into two main categories: volumetric mass estimation and extant scaling methods. Each has advantages and disadvantages, which is why, when possible, it is best to perform both, and compare the results to determine what is most plausible within reason. Here we employ volumetric mass estimation (VME) to calculate an approximate body mass for previously described specimens of Anzu wyliei from the Carnegie Museum of Natural History. We also use extant scaling methods to try to obtain a reliable mass estimate for this taxon.  In addition, we present the first digital life restoration and convex hull of the dinosaur Anzu wyliei used for mass estimation purposes. We found that the volumetric mass estimation using our  digital model was 216-280kg, which falls within the range predicted by extant scaling techniques, while the mass estimate using minimum convex hulls was below the predicted range, between 159-199 kg . The VME method for Anzu wyliei strongly affirms the predictive utility of extant-based scaling. However, volumetric mass estimates are likely more precise because the models are based on comprehensive specimen anatomy rather than regressions of a phylogenetically comprehensive but disparate sample.


Author(s):  
Tom J L C Bakx ◽  
Laura Sommovigo ◽  
Stefano Carniani ◽  
Andrea Ferrara ◽  
Hollis B Akins ◽  
...  

Abstract We report ALMA Band 9 continuum observations of the normal, dusty star-forming galaxy A1689-zD1 at z = 7.13, resulting in a ∼4.6 σ detection at 702 GHz. For the first time these observations probe the far-infrared (FIR) spectrum shortward of the emission peak of a galaxy in the Epoch of Reionization (EoR). Together with ancillary data from earlier works, we derive the dust temperature, Td, and mass, Md, of A1689-zD1 using both traditional modified blackbody spectral energy density fitting, and a new method that relies only on the [C ii] 158 μm line and underlying continuum data. The two methods give $T_{\rm d} = (42^{+13}_{-7}, 40^{+13}_{-7}$) K, and $M_{\rm d} = (1.7^{+1.3}_{-0.7}, 2.0^{+1.8}_{-1.0})\, \times {}\, 10^{7} \, M_{\odot }$. Band 9 observations improve the accuracy of the dust temperature (mass) estimate by ∼50 per cent (6 times). The derived temperatures confirm the reported increasing Td-redshift trend between z = 0 and 8; the dust mass is consistent with a supernova origin. Although A1689-zD1 is a normal UV-selected galaxy, our results, implying that ∼85 per cent of its star formation rate is obscured, underline the non-negligible effects of dust in EoR galaxies.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Nobuko Kametani ◽  
Yasuo Ishizaki ◽  
Mitsuhiro Yoshimoto ◽  
Fukashi Maeno ◽  
Akihiko Terada ◽  
...  

AbstractOn January 23, 2018, a small phreatic eruption (VEI = 1) occurred at the Motoshirane Pyroclastic Cone Group in the southern part of Kusatsu-Shirane Volcano in central Japan. The eruption ejected ash, lapillus, and volcanic blocks from three newly opened craters: the main crater (MC), west crater (WC), and south crater (SC). Volcanic blocks were deposited up to 0.5 km from each crater. In contrast, the ash released during this eruption fell up to 25 km ENE of the volcano. The total mass of the fall deposit generated by the eruption was estimated using two methods, yielding total masses of 3.4 × 104 t (segment integration method) and 2.4 × 104 t (Weibull fitting method). The calculations indicate that approximately 70% of the fall deposit was located within 0.5 km of the craters, which was mainly attributed to the low height of the eruption plume.


2021 ◽  
Vol 9 ◽  
Author(s):  
Marco Romano ◽  
Fabio Manucci ◽  
Bruce Rubidge ◽  
Marc J. Van den Brandt

Pareiasaurs (Amniota, Parareptilia) were characterized by a global distribution during the Permian period, forming an important component of middle (Capitanian) and late Permian (Lopingian) terrestrial tetrapod biodiversity. This clade represents an early evolution of sizes over a ton, playing a fundamental role in the structure of middle and late Permian biodiversity and ecosystems. Despite their important ecological role and relative abundance around the world, our general knowledge of the biology of these extinct tetrapods is still quite limited. In this contribution we provide a possible in vivo reconstruction of the largest individual of the species Scutosaurus karpinskii and a volumetric body mass estimate for the taxon, considering that body size is one of the most important biological aspects of organisms. The body mass of Scutosaurus was calculated using a 3D photogrammetric model of the complete mounted skeleton PIN 2005/1537 from the Sokolki locality, Arkhangelsk Region, Russia, on exhibit at the Borissiak Paleontological Institute, Russian Academy of Sciences (Moscow). By applying three different densities for living tissues of 0.99, 1, and 1.15 kg/1,000 cm3 to reconstructed “slim,” “average” and “fat” 3D models we obtain average body masses, respectively, of 1,060, 1,160, and 1,330 kg, with a total range varying from a minimum of one ton to a maximum of 1.46 tons. Choosing the average model as the most plausible reconstruction and close to the natural condition, we consider a body mass estimate of 1,160 kg as the most robust value for Scutosaurus, a value compatible with that of a large terrestrial adult black rhino and domestic cow. This contribution demonstrates that barrel-shaped herbivores, subsisting on a high-fiber diet and with a body mass exceeding a ton, had already evolved in the upper Palaeozoic among parareptiles, shedding new light on the structure of the first modern terrestrial ecosystems.


2021 ◽  
pp. 2150118
Author(s):  
Claudio Corianò ◽  
Paul H. Frampton

Using the most recent experimental data on parameters of the standard electroweak theory, as well as renormalization group equations with a boundary matching condition, we derive a refined and more accurate value for the mass of the doubly-charged bilepton [Formula: see text] occurring in the spontaneous breaking of the gauge group [Formula: see text] to the standard electroweak gauge group [Formula: see text]. Our result is [Formula: see text] TeV.


2021 ◽  
Vol 647 ◽  
pp. A7
Author(s):  
G. Lamer ◽  
A. D. Schwope ◽  
P. Predehl ◽  
I. Traulsen ◽  
J. Wilms ◽  
...  

We report the discovery of a giant dust scattering ring around the Black Hole transient MAXI J1348−630 with SRG/eROSITA during its first X-ray all-sky survey. During the discovery observation in February 2020, the ring had an outer diameter of 1.3 deg, growing to 1.6 deg by the time of the second all-sky survey scan in August 2020. This makes the new dust ring by far the largest X-ray scattering ring observed so far. Dust scattering halos, in particular the rings found around transient sources, provide an opportunity to make precise distance measurements towards the original X-ray sources. We combine data from SRG/eROSITA, XMM-Newton, MAXI, and Gaia to measure the geometrical distance of MAXI J1348−630. The Gaia data place the scattering dust at a distance of 2050 pc. Based on the measured time lags and the geometry of the ring we find MAXI J1348−630 at a distance of 3390 pc with a statistical uncertainty of only 1.1% and a systematic uncertainty of 10% caused mainly by the parallax offset of Gaia. This result makes MAXI J1348−630 one of the black hole transients with the most accurately determined distances. The new distance leads to a revised mass estimate for the black hole of 11 ± 2 M⊙. The transition to the soft state during the outburst occurred when the bolometric luminosity of MAXI J1348−630 reached 1.7% of its Eddington luminosity.


2021 ◽  
pp. 1-6
Author(s):  
Eric Buffetaut ◽  
Delphine Angst

Abstract A large bone from the upper Eocene Totland Bay Formation of Hordle Cliff (Hampshire), originally described by Seeley (1866) as Macrornis tanaupus and interpreted by him as belonging to a ‘large Struthious bird’, is redescribed and illustrated for the first time. It is not a reptile bone, as previously suggested, but the proximal part of a left avian tibiotarsus. A mass estimate of 43 kg, comparable to that of an emu, suggests that it was flightless. A precise identification is difficult because of the incompleteness of the specimen, and Macrornis tanaupus should probably be considered as a nomen dubium. We exclude Seeley’s interpretation as a ratite, as well as previous attributions to gastornithids. We tentatively suggest that the specimen may belong to a phorusrhacid, which would extend the stratigraphic record of this group in Europe by a few million years. The presence of a large terrestrial bird in the upper Eocene of Europe may have a bearing on the interpretation of enigmatic footprints of very large birds from the upper Eocene Paris gypsum.


Author(s):  
Alis J Deason ◽  
Denis Erkal ◽  
Vasily Belokurov ◽  
Azadeh Fattahi ◽  
Facundo A Gómez ◽  
...  

Abstract We use a distribution function analysis to estimate the mass of the Milky Way out to 100 kpc using a large sample of halo stars. These stars are compiled from the literature, and the vast majority ($\sim \! 98\%$) have 6D phase-space information. We pay particular attention to systematic effects, such as the dynamical influence of the Large Magellanic Cloud (LMC), and the effect of unrelaxed substructure. The LMC biases the (pre-LMC infall) halo mass estimates towards higher values, while realistic stellar halos from cosmological simulations tend to underestimate the true halo mass. After applying our method to the Milky Way data we find a mass within 100 kpc of M( < 100kpc) = 6.07 ± 0.29(stat.) ± 1.21(sys.) × 1011M⊙. For this estimate, we have approximately corrected for the reflex motion induced by the LMC using the Erkal et al. model, which assumes a rigid potential for the LMC and MW. Furthermore, stars that likely belong to the Sagittarius stream are removed, and we include a 5% systematic bias, and a 20% systematic uncertainty based on our tests with cosmological simulations. Assuming the mass-concentration relation for Navarro-Frenk-White haloes, our mass estimate favours a total (pre-LMC infall) Milky Way mass of M200c = 1.01 ± 0.24 × 1012M⊙, or (post-LMC infall) mass of M200c = 1.16 ± 0.24 × 1012 M⊙ when a 1.5 × 1011M⊙ mass of a rigid LMC is included.


Sign in / Sign up

Export Citation Format

Share Document