scholarly journals A Comparison Between Binary Star Light Curves and Those of Possible Binary Asteroids

1984 ◽  
Vol 80 ◽  
pp. 387-392
Author(s):  
H. J. Schober

AbstractSince about ten years coordinated programs of photoelectric observations of asteroids are carried out to derive rotation rates and light curves. Quite a number of those asteroids exhibit features in their light curves, with similar characteristics as variable stars and especially eclipsing binaries. This would allow also an interpretation that there might be an evidence for the binary nature of some asteroids, based on observational hints. A few examples are given and a list of indications for the possible binary nature of asteroids, based on their light curve features, is presented.

2011 ◽  
Vol 7 (S282) ◽  
pp. 73-74 ◽  
Author(s):  
J. Nedoroščik ◽  
M. Vaňko ◽  
Š. Parimucha

AbstractThe main goal of this work was to find dependencies between Fourier coefficients, which were developed by light curve fitting with Fourier polynomials. The light curves were acquired from the ASAS database (All Sky Automated Survey). In this statistical research it was necessary to sort and modify these data, because light curves of eclipsing binaries are just part of a bigger database, which contains the light curves of pulsating variable stars, novas etc. It was required to phase and normalize all of our light curves, that it could be possible to use a program to fit light curves with Fourier coefficients. Thereafter, we were looking for relations between Fourier coefficients.


2021 ◽  
Vol 502 (1) ◽  
pp. 1299-1311
Author(s):  
Heidi B Thiemann ◽  
Andrew J Norton ◽  
Hugh J Dickinson ◽  
Adam McMaster ◽  
Ulrich C Kolb

ABSTRACT We present the first analysis of results from the SuperWASP variable stars Zooniverse project, which is aiming to classify 1.6 million phase-folded light curves of candidate stellar variables observed by the SuperWASP all sky survey with periods detected in the SuperWASP periodicity catalogue. The resultant data set currently contains >1 million classifications corresponding to >500 000 object–period combinations, provided by citizen–scientist volunteers. Volunteer-classified light curves have ∼89 per cent accuracy for detached and semidetached eclipsing binaries, but only ∼9 per cent accuracy for rotationally modulated variables, based on known objects. We demonstrate that this Zooniverse project will be valuable for both population studies of individual variable types and the identification of stellar variables for follow-up. We present preliminary findings on various unique and extreme variables in this analysis, including long-period contact binaries and binaries near the short-period cut-off, and we identify 301 previously unknown binaries and pulsators. We are now in the process of developing a web portal to enable other researchers to access the outputs of the SuperWASP variable stars project.


2018 ◽  
Vol 617 ◽  
pp. A32 ◽  
Author(s):  
O. Burggraaff ◽  
G. J. J. Talens ◽  
J. Spronck ◽  
A.-L. Lesage ◽  
R. Stuik ◽  
...  

Context. The Multi-site All-Sky CAmeRA (MASCARA) aims to find the brightest transiting planet systems by monitoring the full sky at magnitudes 4 < V < 8.4, taking data every 6.4 s. The northern station has been operational on La Palma since February 2015. These data can also be used for other scientific purposes, such as the study of variable stars. Aims. In this paper we aim to assess the value of MASCARA data for studying variable stars by determining to what extent known variable stars can be recovered and characterised, and how well new, unknown variables can be discovered. Methods. We used the first 14 months of MASCARA data, consisting of the light curves of 53 401 stars with up to one million flux points per object. All stars were cross-matched with the VSX catalogue to identify known variables. The MASCARA light curves were searched for periodic flux variability using generalised Lomb–Scargle periodograms. If significant variability of a known variable was detected, the found period and amplitude were compared with those listed in the VSX database. If no previous record of variability was found, the data were phase folded to attempt a classification. Results. Of the 1919 known variable stars in the MASCARA sample with periods 0.1 < P < 10 days, amplitudes >2%, and that have more than 80 h of data, 93.5% are recovered. In addition, the periods of 210 stars without a previous VSX record were determined, and 282 candidate variable stars were newly identified. We also investigated whether second order variability effects could be identified. The O’Connell effect is seen in seven eclipsing binaries, of which two have no previous record of this effect. Conclusions. MASCARA data are very well suited to study known variable stars. They also serve as a powerful means to find new variables among the brightest stars in the sky. Follow-up is required to ensure that the observed variability does not originate from faint background objects.


2018 ◽  
Vol 616 ◽  
pp. A39 ◽  
Author(s):  
P. F. L. Maxted

Context. Inaccurate limb-darkening models can be a significant source of error in the analysis of the light curves for transiting exoplanet and eclipsing binary star systems, particularly for high-precision light curves at optical wavelengths. The power-2 limb-darkening law, Iλ(µ) = 1 − c(1−µα), has recently been proposed as a good compromise between complexity and precision in the treatment of limb-darkening. Aims. My aim is to develop a practical implementation of the power-2 limb-darkening law and to quantify the accuracy of this implementation. Methods. I have used synthetic spectra based on the 3D stellar atmosphere models from the STAGGER-grid to compute the limb-darkening for several passbands (UBVRI, CHEOPS, TESS, Kepler, etc.). The parameters of the power-2 limb-darkening laws are optimized using a least-squares fit to a simulated light curve computed directly from the tabulated Iλ(μ) values. I use the transformed parameters h1 = 1 − c(1 − 2−α) and h2 = c2−α to directly compare these optimized limb-darkening parameters to the limb darkening measured from Kepler light curves of 16 transiting exoplanet systems. Results. The posterior probability distributions (PPDs) of the transformed parameters h1 and h2 resulting from the light curve analysis are found to be much less strongly correlated than the PPDs for c and α. The agreement between the computed and observed values of (h1, h2) is generally very good but there are significant differences between the observed and computed values for Kepler-17, the only star in the sample that shows significant variability between the eclipses due to magnetic activity (star spots). Conclusions. The tabulation of h1 and h2 provided here can be used to accurately model the light curves of transiting exoplanets. I also provide estimates of the priors that should be applied to transformed parameters h1 and h2 based on my analysis of the Kepler light curves of 16 stars with transiting exoplanets.


1996 ◽  
Vol 158 ◽  
pp. 471-472
Author(s):  
Janet H. Wood ◽  
E. L. Robinson ◽  
E.-H. Zhang

BE UMa is a close binary star, not transferring mass, with an extremely hot primary star irradiating the inner face of the cool secondary star. The light curve shows a large-amplitude, sinusoidal variation with a period of 2.29 d, and an eclipse that is centered on the minimum of the variation [1], [3]. According to [1], the eclipse is partial, not total. However, it has been argued [2] that the eclipse was really flat bottomed and thus total. This has important repercussions for the deduced model of the system. To resolve this issue we obtained simultaneous UBVR photometry of BE UMa using the Stiening 4-channel, high-speed photometer on the 82-inch telescope at McDonald Observatory. The mean light curves are shown in Fig. 1. The eclipse in all colours is round bottomed and partial. The different depths are caused by the different contribution from the red secondary star in each bandpass.


2019 ◽  
Vol 487 (2) ◽  
pp. 1765-1776 ◽  
Author(s):  
Somnath Dutta ◽  
Soumen Mondal ◽  
Santosh Joshi ◽  
Ramkrishna Das

ABSTRACT We present optical I-band light curves of the stars towards a star-forming region Cygnus OB7 from 17-night photometric observations. The light curves are generated from a total of 381 image frames with very good photometric precision. From the light curves of 1900 stars and their periodogram analyses, we detect 31 candidate variables including five previously identified. 14 out of 31 objects are periodic and exhibit the rotation rates in the range of 0.15–11.60 d. We characterize those candidate variables using optical/infrared colour–colour diagram and colour–magnitude diagram (CMD). From spectral indices of the candidate variables, it turns out that four are probably Classical T-Tauri stars (CTTSs), rest remain unclassified from present data, they are possibly field stars or discless pre-main-sequence stars towards the region. Based on their location on the various CMDs, the ages of two T Tauri Stars were estimated to be ∼5 Myr. The light curves indicate at least five of the periodic variables are eclipsing systems. The spatial distribution of young variable candidates on Planck 857 GHz (350 $\mu$m) and 2MASS (Two Micron All Sky Survey) Ks images suggest that at least two of the CTTSs are part of the active star-forming cloud Lynds 1003.


1990 ◽  
Vol 122 ◽  
pp. 437-439
Author(s):  
V.P. Arkhipova ◽  
T.S. Belyakina ◽  
O.D. Dokuchaeva ◽  
R.I. Noskova

The light curve of the symbiotic nova HM Sge in 1960–1988 derived from 260 photographic and 243 photoelectric observations (Arkhipova et al. 1989) in presented in Fig. 1.The rate of nova-like brightness increase in 1975 was about 0.04 mag/day. The maximum duration was about 4 years, with brightness oscillations of up to 1 mag. After 1981 the star brightness decreased slowly (at the rate of ~ 0.08 mag/yr) with small oscillations of 0.2 mag in the B band.Fourteen years before the outburst of HM Sge a preoutburst phase with a light amplitude of 1 mag and a duration of about two years was observed, but its reality is rather doubtful. Similar features can also be seen in the light curves of the symbiotic novae V1016 Cyg and V1329 Cyg, 15 and 12 years before their outbursts, respectively.


2011 ◽  
Vol 7 (S282) ◽  
pp. 11-20
Author(s):  
Edward F. Guinan ◽  
Scott Engle ◽  
Edward J. Devinney

AbstractCurrent and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a “stealth” stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large – e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT)), and space missions, such as the James Webb Space Telescope (JWST), the possible NASA Explorer Transiting Exoplanet Survey Satellite (TESS – recently approved for further study) and Gaia (due for launch during 2013) will all be discussed. Also highlighted are advances in interferometers (both on the ground and from space) and imaging now possible at sub-millimeter wavelengths from the Extremely Long Array (ELVA) and Atacama Large Millimeter Array (ALMA). High precision Doppler spectroscopy, for example with HARPS, HIRES and more recently the Carnegie Planet Finder Spectrograph, are currently returning RVs typically better than ~2-m/s for some brighter exoplanet systems. But soon it should be possible to measure Doppler shifts as small as ~10-cm/s – sufficiently sensitive for detecting Earth-size planets. Also briefly discussed is the impact these instruments will have on the study of eclipsing binaries, along with future possibilities of utilizing methods from the emerging field of Astroinformatics, including: the Virtual Observatory (VO) and the possibilities of analyzing these huge datasets using Neural Network (NN) and Artificial Intelligence (AI) technologies.


1983 ◽  
Vol 71 ◽  
pp. 411-413
Author(s):  
M. Zeilik ◽  
R. Elston ◽  
G. Henson ◽  
P. Smith

XY UMa (+55°1317, SA027143) is a short-period (P 0.48 d) cousin of the RS CVn stars. The primary star is G2-G5V; the secondary K5 (Geyer, quoted by Lorenzi and Scaltriti, 1977). Geyer (1977) has done the bulk of the observational work to date, including the first photoelectric observations. The rapid, annual changes in XY UMa's light curve, and the fact that the last published light curves was from the 1977 season convinced us to reobserve this active system.


1991 ◽  
Vol 148 ◽  
pp. 381-381
Author(s):  
William Tobin ◽  
A. C. Gilmore ◽  
Alan Wadsworth ◽  
S.R.D. West

Late in 1988 the Mt John University Observatory acquired a cryogenic CCD system from Photometrics Ltd (Tucson). The chip is a Thomson CSF TH7882 CDA comprising 384 × 576 pixels. As part of the evaluation process, we have begun two differential photometry programs of the Magellanic Clouds using the Mt John 0.6m Boller & Chivens telescope. On this telescope each CCD pixel corresponds to 0.6 arcsec. Mt John's southerly latitude (44°S) permits year-round observations of the Clouds.The first program concerns B, V and I photometry of five blue eclipsing binaries selected, on the basis of Gaposchkin's (1970, 1977) photographic light curves, to have roughly equal components with minimal interaction. HV 12634 has also been observed for comparison with the CCD light curves published by Jensen et al. (1988). Fig. 1 shows the B observations so far obtained for HV 1761, but the reduction is preliminary, being based on aperture-integrated magnitudes. The field is populous, and a final reduction will require use of a crowded-field reduction package such as ROMAFOT.


Sign in / Sign up

Export Citation Format

Share Document