scholarly journals Regional feedbacks under changing climate and land-use conditions

2012 ◽  
Vol 3 (1) ◽  
pp. 201-234 ◽  
Author(s):  
L. Batlle Bayer ◽  
B. J. J. M. van den Hurk ◽  
B. J. Strengers ◽  
J. G. van Minnen

Abstract. Ecosystem responses to a changing climate and human-induced climate forcings (e.g. deforestation) might amplify (positive feedback) or dampen (negative feedback) the initial climate response. Feedbacks may include the biogeochemical (e.g. carbon cycle) and biogeophysical feedbacks (e.g. albedo and hydrological cycle). Here, we first review the most important feedbacks and put them into the context of a conceptual framework, including the major processes and interactions between terrestrial ecosystems and climate. We explore potential regional feedbacks in four hot spots with pronounced potential changes in land-use/management and local climate: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, the relevant human-induced climate forcings and feedbacks were identified based on published literature. When evapotranspiration is limited by a soil water deficit, heat waves in Europe are amplified (positive soil moisture-temperature feedback). Drought events in the Amazon lead to further rainfall reduction when water recycling processes are affected (positive soil moisture-precipitation feedback). In SSA, the adoption of irrigation in the commonly rainfed systems can modulate the negative soil moisture-temperature feedback. In contrast, future water shortage in South and Southeast Asia can turn the negative soil moisture-temperature feedback into a positive one. Further research including advanced modeling strategies is needed to isolate the dominant processes affecting the strength and sign of the feedbacks. In addition, the socio-economic dimension needs to be considered in the ecosystems-climate system to include the essential role of human decisions on land-use and land-cover change (LULCC). In this context, enhanced integration between Earth System (ES) and Integrated Assessment (IA) modeling communities is strongly recommended.

2021 ◽  
Author(s):  
Rita M. Cardoso ◽  
Daniela D. C. A. Lima ◽  
Pedro M. M. Soares ◽  
Diana Rechid ◽  
Marcus Breil ◽  
...  

<p>Land-atmosphere energy and water exchanges are fundamentally linked to soil-moisture. The distribution of the planets’ biomes hinges on the surface-atmosphere coupling since soil moisture and temperature feedbacks have a strong influence on plant transpiration and photosynthesis. Land use/land cover changes (LUC) modify locally land surface properties that control the land-atmosphere mass, energy, and momentum exchanges. The impact of these changes depends on the scale and nature of land cover modifications and is very difficult to quantify. However, large inconsistencies in the LUC impacts are observed between models, highlighting the need for common LUC across a large ensemble of models. The Flagship Pilot Study LUCAS (Land Use & Climate Across Scales) provides a coordinated effort to study LUC using an ensemble of regional climate models (RCMs). In the first phase of the project 3 experiments were performed for continental Europe: EVAL (current climate); GRASS (trees replaced by grassland) and FOREST (grasses and shrubs replaced by trees).  An analysis of the energy and moisture balance for the three experiments is performed, focusing on the relationship between the fluxes partitioning, heat waves and droughts. To better asses the link between extreme temperatures and soil moisture or evapotranspiration, a new coupling metric for short time scales is proposed, the Latent Heat Flux-Temperature Coupling Magnitude (LETCM). This new metric is computed for a specific period, considering the positive temperature extremes and the negative latent heat flux extremes. Areas with positive magnitude values imply higher temperature anomaly, due to a negative latent heat flux anomaly. This new metric only considers periods of strong coupling, with positive signals in areas of high temperatures and evaporative stress, allowing for the detection of events that are extreme for energy and water cycle. Concurrently, a new decile based normalised drought index is used to examine the concurrent heat extremes and droughts. The analysis focuses on the three experiments revealing that the number, amplitude and spatial distribution of compound extreme heat and drought is highly model dependant. The impact of afforestation or deforestation is not consistent across models.</p><p><strong>Acknowledgements</strong></p><p> The authors wish to acknowledge project LEADING (PTDC/CTA-MET/28914/2017) and FCT - project UIDB/50019/2020 - Instituto Dom Luiz.</p>


Sign in / Sign up

Export Citation Format

Share Document