Earth System Dynamics Discussions
Latest Publications


TOTAL DOCUMENTS

220
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

Published By Copernicus Gmbh

2190-4995

2015 ◽  
Vol 6 (2) ◽  
pp. 2645-2688
Author(s):  
A. Kessler ◽  
J. Tjiputra

Abstract. Earth System Model (ESM) simulations exhibit large biases compares to observations of the present ocean CO2 sink. The inter-model spread in projections increases by nearly two-fold by the end of the 21st century, and therefore contributes significantly to the uncertainty of future climate projections. In this study, the Southern Ocean (SO) is shown to be one of the hot-spot regions for future uptake of anthropogenic CO2, characterized by both the solubility pump and biological-mediated carbon drawdown in the Spring and Summer. We show, by analyzing a suite of fully-interactive ESMs simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5) over the 21st century under the high CO2 RCP8.5 scenario, that the SO is the only region where the atmospheric CO2 uptake rate continues to increase toward the end of the 21st century. Furthermore, our study discovers a strong inter-model link between the contemporary CO2 uptake in the Southern Ocean and the projected global cumulated uptake over the 21st century. The inter-model spread for the contemporary CO2 uptake in the Southern Ocean is attributed to the variations in the simulated seasonal cycle of surface pCO2. Two groups of model behaviour have been identified. The first one simulates anomalously strong SO carbon uptake, generally due to both too-strong net primary production and too-low surface pCO2 in December–January. The second group simulates an opposite CO2 flux seasonal phase, which is driven mainly by the bias in the sea surface temperature variability. We show that these biases are persistent throughout the 21st century, which highlight the urgent need for a sustained and comprehensive biogeochemical monitoring system in the Southern Ocean to better constrain key processes represented in current model systems.


2015 ◽  
Vol 6 (2) ◽  
pp. 2617-2643
Author(s):  
A. M. Ramos ◽  
R. Nieto ◽  
R. Tomé ◽  
L. Gimeno ◽  
R. M. Trigo ◽  
...  

Abstract. An automated atmospheric rivers (ARs) detection algorithm is used for the North Atlantic Ocean Basin allowing the identification of the major ARs that affected western European coasts between 1979 and 2014 over the winter half-year (October to March). The entire west coast of Europe was divided into five domains, namely, the Iberian Peninsula (9.75° W; 36–43.75° N), France (4.5° W; 43.75–50° N), UK (4.5° W; 50–59° N), southern Scandinavia and the Netherlands (5.25° E; 50–59° N), and northern Scandinavia (5.25° E; 59–70° N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main sources of moisture that reach each domain. The Lagrangian dataset used was obtained from the FLEXPART model global simulation from 1979 to 2012, where the atmosphere was divided into approximately 2.0 million parcels, and it was forced by ERA-Interim reanalysis on a 1° latitude–longitude grid. Results show that, in general, for all regions considered, the major climatological source of moisture extends along the subtropical North Atlantic, from the Florida Peninsula (northward of 20° N), to each sink region, with the nearest coast to each sink region always appearing as a local maximum of evaporation. In addition, during the AR events, the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the moisture sources is found when the sink region is positioned at higher latitudes. In conclusion, the results confirm the advection of moisture linked to ARs from subtropical ocean areas, but also the existence of a tropical one, and the mid-latitude sources further the analysed longitude along the North Atlantic is located eastward.


2015 ◽  
Vol 6 (2) ◽  
pp. 2543-2576
Author(s):  
U. T. Okpara ◽  
L. C. Stringer ◽  
A. J. Dougill

Abstract. The science of climate security and conflict is replete with controversies. Yet the increasing vulnerability of politically fragile countries to the security consequences of climate change is widely acknowledged. Although climate conflict reflects a continuum of conditional forces that coalesce around the notion of vulnerability, how different portrayals of vulnerability influence the discursive formation of climate conflict relations remains an exceptional but under-researched issue. This paper combines a systematic discourse analysis with a vulnerability interpretation diagnostic tool to explore: (i) how discourses of climate conflict are constructed and represented, (ii) how vulnerability is communicated across discourse lines, and (iii) the strength of contextual vulnerability against a deterministic narrative of scarcity-induced conflict, such as that pertaining to land. Systematically characterising climate conflict discourses based on the central issues constructed, assumptions about mechanistic relationships, implicit normative judgements and vulnerability portrayals, provides a useful way of understanding where discourses differ. While discourses show a wide range of opinions "for" and "against" climate conflict relations, engagement with vulnerability has been less pronounced – except for the dominant context centrism discourse concerned about human security (particularly in Africa). In exploring this discourse, we observe an increasing sense of contextual vulnerability that is oriented towards a concern for complexity rather than predictability. The article concludes by illustrating that a turn towards contextual vulnerability thinking will help advance a constructivist theory-informed climate conflict scholarship that recognises historicity, specificity and variability as crucial elements of contextual totalities of any area affected by climate conflict.


2015 ◽  
Vol 6 (2) ◽  
pp. 2577-2615
Author(s):  
U. Port ◽  
M. Claussen ◽  
V. Brovkin

Abstract. The biogeophysical effect of forests in a climate with permanent high-latitude ice cover has already been investigated. We extend this analysis to warm, basically ice-free climates, and we choose the early Eocene, some 54 to 52 million years ago, as paradigm for such type of climate. We use the Max Planck Institute for Meteorology Earth System Model to evaluate the radiative forcing of forests and the feedbacks triggered by forests in early Eocene and pre-industrial climate, respectively. To isolate first-order effects, we compare idealised simulations in which all continents are covered either by dense forests or by deserts with either bright or dark soil. In comparison with desert continents covered by bright soil, forested continents warm the planet in the early Eocene climate and in the pre-industrial climate. The warming can be attributed to different feedback processes, though. The lapse-rate – water-vapour feedback is stronger in early Eocene climate than in pre-industrial climate, but strong and negative cloud-related feedbacks nearly outweigh the positive lapse-rate – water-vapour feedback in the early Eocene climate. Subsequently, global mean warming by forests is weaker in the early Eocene climate than in the pre-industrial climate. Sea-ice related feedbacks are weak in the almost ice-free climate of the early Eocene, thereby leading to a weaker high-latitude warming by forests than in the pre-industrial climate. When the land is covered with dark soils, forests cool the early Eocene climate stronger than the pre-industrial climate because the lapse-rate and water-vapour feedbacks are stronger in the early Eocene climate. Cloud-related feedbacks are equally strong in both climates. We conclude that radiative forcing by forests varies little with the climate state, while most subsequent feedbacks depend on the climate state.


2015 ◽  
Vol 6 (2) ◽  
pp. 2447-2505 ◽  
Author(s):  
C.-F. Schleussner ◽  
T. K. Lissner ◽  
E. M. Fischer ◽  
J. Wohland ◽  
M. Perrette ◽  
...  

Abstract. Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. Currently, two such levels are discussed in the context of the international climate negotiations as long-term global temperature goals: a below 2 °C and a 1.5 °C limit in global-mean temperature rise above pre-industrial levels. Despite the prominence of these two temperature limits, a comprehensive assessment of the differences in climate impacts at these levels is still missing. Here we provide an assessment of key impacts of climate change at warming levels of 1.5 °C and 2 °C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. Our results reveal substantial differences in impacts between 1.5 °C and 2 °C. For heat-related extremes, the additional 0.5 °C increase in global-mean temperature marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions. Similarly, this warming difference is likely to be decisive for the future of tropical coral reefs. In a scenario with an end-of-century warming of 2 °C, virtually all tropical coral reefs are projected to be at risk of severe degradation due to temperature induced bleaching from 2050 onwards. This fraction is reduced to about 90 % in 2050 and projected to decline to 70 % by 2100 for a 1.5 °C scenario. Analyses of precipitation-related impacts reveal distinct regional differences and several hot-spots of change emerge. Regional reduction in median water availability for the Mediterranean is found to nearly double from 9 to 17 % between 1.5 °C and 2 °C, and the projected lengthening of regional dry spells increases from 7 % longer to 11 %. Projections for agricultural yields differ between crop types as well as world regions. While some (in particular high-latitude) regions may benefit, tropical regions like West Africa, South-East Asia, as well as Central and Northern South America are projected to face local yield reductions, particularly for wheat and maize. Best estimate sea-level rise projections based on two illustrative scenarios indicate a 50 cm rise by 2100 relative to year 2000-levels under a 2 °C warming, which is about 10 cm lower for a 1.5 °C scenario. Our findings highlight the importance of regional differentiation to assess future climate risks as well as different vulnerabilities to incremental increases in global-mean temperature. The article provides a consistent and comprehensive assessment of existing projections and a solid foundation for future work on refining our understanding of warming-level dependent climate impacts.


2015 ◽  
Vol 6 (2) ◽  
pp. 2507-2542 ◽  
Author(s):  
I. S. Weaver ◽  
J. G. Dyke

Abstract. Given the potential for elements of the Earth system to undergo rapid, hard to reverse changes in state, there is a pressing need to establish robust methods to produce early warning signals of such events. Here we present a conceptual ecosystem model in which a diversity of stable states emerge, along with rapid changes, referred to as critical transitions, as a consequence of external driving and non-linear ecological dynamics. We are able to produce robust early warning signals that precede critical transitions. However, we show that there is no correlation between the magnitude of the signal and magnitude or reversibility of any individual critical transition. We discuss these findings in the context of ecosystem management prior to and post critical transitions. We argue that an understanding of the dynamics of the systems is necessary both for management prior and post critical transitions and the effective interpretation of any early warning signal that may be produced for that system.


2015 ◽  
Vol 6 (2) ◽  
pp. 2417-2445
Author(s):  
H. Jørstad ◽  
C. Webersik

Abstract. In recent years, research on climate change and human security has received much attention among policy makers and academia alike. Communities in the Global South that rely on an intact resource base will especially be affected by predicted changes in temperature and precipitation. The objective of this article is to better understand under what conditions local communities can adapt to anticipated impacts of climate change and avoid conflict over the loss of resources. The empirical part of the paper answers the question to what extent local communities in the Chilwa Basin in Malawi have experienced climate change and how they are affected by it. Further, it assesses one of Malawi's adaptation projects designed to build resilience to a warmer and more variable climate, and points to some of its limitations. This research shows that not all adaptation strategies are suited to cope with a warmer and more variable climate.


2015 ◽  
Vol 6 (2) ◽  
pp. 2383-2416
Author(s):  
V. Guglielmi ◽  
C. Goyet ◽  
F. Touratier

Abstract. The chemical composition of the global ocean is governed by biological, chemical and physical processes. These processes interact with each other so that the concentrations of carbon dioxide, oxygen, nitrate and phosphate vary in constant proportions, referred to as the Redfield ratios. We build here the Generalized Total Least-Squares estimator of these ratios. The interest of our approach is twofold: it respects the hydrological characteristics of the studied areas, and it can be applied identically in any area where enough data are available. The tests performed on the Atlantic Ocean highlight a variability of the Redfield ratios, both with geographical location and with depth. This variability emphasizes the importance of local and accurate estimates of Redfield ratios.


2015 ◽  
Vol 6 (2) ◽  
pp. 2339-2381 ◽  
Author(s):  
J. Mikšovský ◽  
E. Holtanová ◽  
P. Pišoft

Abstract. Monthly near-surface temperature anomalies from several gridded datasets (GISTEMP, Berkeley Earth, MLOST, HadCRUT4, 20th Century Reanalysis) were investigated and compared with regard to the presence of components attributable to external climate forcings (anthropogenic, solar and volcanic) and to major internal climate variability modes (El Niño/Southern Oscillation, North Atlantic Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation and variability characterized by the Trans-Polar Index). Multiple linear regression was used to separate components related to individual explanatory variables in local monthly temperatures as well as in their global means, over the 1901–2010 period. Strong correlations of temperature and anthropogenic forcing were confirmed for most of the globe, whereas only weaker and mostly statistically insignificant connections to solar activity were indicated. Imprints of volcanic forcing were found to be largely insignificant in the local temperatures, in contrast to the clear volcanic signature in their global averages. An attention was also paid to the manifestations of short-term time shifts in the responses to the forcings, and to differences in the spatial fingerprints detected from individual temperature datasets: it is shown that although the resemblance of the response patterns is usually strong, some regional contrasts appear. Noteworthy differences from the other datasets were found especially for the 20th Century Reanalysis, particularly for the components attributable to anthropogenic and volcanic forcing over land, but also in some of the teleconnection patterns related to the internal variability modes.


2015 ◽  
Vol 6 (2) ◽  
pp. 2273-2322 ◽  
Author(s):  
I. Keggenhoff ◽  
M. Elizbarashvili ◽  
L. King

Abstract. During the last 50 years Georgia experienced a rising number of severe summer heat waves causing increasing heat-health impacts. In this study, the 10 most severe heat waves between 1961 and 2010 and recent changes in heat wave characteristics have been detected from 22 homogenized temperature minimum and maximum series using the Excess Heat Factor (EHF). A composite and Canonical Correlation Analysis (CCA) have been performed to study summer heat wave patterns and their relationships to the selected predictors: mean Sea Level Pressure (SLP), Geopotential Height at 500 mb (Z500), Sea Surface Temperature (SST), Zonal (u-wind500) and Meridional Wind at 500 mb (v-wind500), Vertical Velocity at 500 mb (O500), Outgoing Longwave Radiation (OLR), Relative Humidity (RH500), Precipitation (RR) and Soil Moisture (SM). Most severe heat events during the last 50 years are identified in 2007, 2006 and 1998. Largest significant trend magnitudes for the number, intensity and duration of low and high-impact heat waves have been found during the last 30 years. Significant changes in the heat wave predictors reveal that all relevant surface and atmospheric patterns contributing to heat waves have been intensified between 1961 and 2010. Composite anomalies and CCA patterns provide evidence of a large anticyclonic blocking pattern over the southern Ural Mountains, which attracts warm air masses from the Southwest, enhances subsidence and surface heating, shifts the African Intertropical Convergence Zone (ITCZ) northwards, and causes a northward shift of the subtropical jet. Moreover, pronounced precipitation and soil moisture deficiency throughout Georgia contribute to the heat wave formation and persistence over Georgia. Due to different large- to mesoscale circulation patterns and the local terrain, heat wave effects over Eastern Georgia are dominated by subsidence and surface heating, while convective rainfall and cooling are observed in the West.


Sign in / Sign up

Export Citation Format

Share Document