scholarly journals A long-term record of blended satellite and in situ sea surface temperature for climate monitoring, modeling and environmental studies

Author(s):  
V. Banzon ◽  
T. M. Smith ◽  
C. Liu ◽  
W. Hankins

Abstract. This paper describes a blended sea-surface temperature (SST) dataset that is part of the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) Program product suite. Using optimum interpolation (OI), in situ and satellite observations are combined on a daily and 0.25° spatial grid to form an SST analysis, i.e., a spatially complete field. A large-scale bias adjustment of the input infrared SSTs is made using buoy and ship observations as a reference. This is particularly important for the time periods when volcanic aerosols from the El Chichon and Mt. Pinatubo eruptions are widespread globally. The main source of SSTs is the Advanced Very High Resolution Radiometer (AVHRR), available from late 1981 to the present, which is also the temporal span of this CDR. The input and processing choices made to ensure a consistent dataset that meets the CDR requirements is summarized. A brief history and an explanation of the forward production schedule for the preliminary and science-quality final product is also provided. The dataset is produced and archived at the newly formed National Centers for Environmental Information (NCEI) in Network Common Data Form (netCDF) at http://doi.org/doi:10.7289/V5SQ8XB5 .

2016 ◽  
Vol 8 (1) ◽  
pp. 165-176 ◽  
Author(s):  
Viva Banzon ◽  
Thomas M. Smith ◽  
Toshio Mike Chin ◽  
Chunying Liu ◽  
William Hankins

Abstract. This paper describes a blended sea-surface temperature (SST) data set that is part of the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) program product suite. Using optimum interpolation (OI), in situ and satellite observations are combined on a daily and 0.25° spatial grid to form an SST analysis, i.e., a spatially complete field. A large-scale bias adjustment of the input infrared SSTs is made using buoy and ship observations as a reference. This is particularly important for the time periods when volcanic aerosols from the El Chichón and Mt. Pinatubo eruptions are widespread globally. The main source of SSTs is the Advanced Very High Resolution Radiometer (AVHRR), available from late 1981 to the present, which is also the temporal span of this CDR. The input and processing choices made to ensure a consistent data set that meets the CDR requirements are summarized. A brief history and an explanation of the forward production schedule for the preliminary and science-quality final product are also provided. The data set is produced and archived at the newly formed National Centers for Environmental Information (NCEI) in Network Common Data Form (netCDF) at doi:10.7289/V5SQ8XB5.


2020 ◽  
Vol 12 (16) ◽  
pp. 2554
Author(s):  
Christopher J. Merchant ◽  
Owen Embury

Atmospheric desert-dust aerosol, primarily from north Africa, causes negative biases in remotely sensed climate data records of sea surface temperature (SST). Here, large-scale bias adjustments are deduced and applied to the v2 climate data record of SST from the European Space Agency Climate Change Initiative (CCI). Unlike SST from infrared sensors, SST measured in situ is not prone to desert-dust bias. An in-situ-based SST analysis is combined with column dust mass from the Modern-Era Retrospective analysis for Research and Applications, Version 2 to deduce a monthly, large-scale adjustment to CCI analysis SSTs. Having reduced the dust-related biases, a further correction for some periods of anomalous satellite calibration is also derived. The corrections will increase the usability of the v2 CCI SST record for oceanographic and climate applications, such as understanding the role of Arabian Sea SSTs in the Indian monsoon. The corrections will also pave the way for a v3 climate data record with improved error characteristics with respect to atmospheric dust aerosol.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Christopher J. Merchant ◽  
Owen Embury ◽  
Claire E. Bulgin ◽  
Thomas Block ◽  
Gary K. Corlett ◽  
...  

Abstract A climate data record of global sea surface temperature (SST) spanning 1981–2016 has been developed from 4 × 1012 satellite measurements of thermal infra-red radiance. The spatial area represented by pixel SST estimates is between 1 km2 and 45 km2. The mean density of good-quality observations is 13 km−2 yr−1. SST uncertainty is evaluated per datum, the median uncertainty for pixel SSTs being 0.18 K. Multi-annual observational stability relative to drifting buoy measurements is within 0.003 K yr−1 of zero with high confidence, despite maximal independence from in situ SSTs over the latter two decades of the record. Data are provided at native resolution, gridded at 0.05° latitude-longitude resolution (individual sensors), and aggregated and gap-filled on a daily 0.05° grid. Skin SSTs, depth-adjusted SSTs de-aliased with respect to the diurnal cycle, and SST anomalies are provided. Target applications of the dataset include: climate and ocean model evaluation; quantification of marine change and variability (including marine heatwaves); climate and ocean-atmosphere processes; and specific applications in ocean ecology, oceanography and geophysics.


2009 ◽  
Vol 66 (7) ◽  
pp. 1467-1479 ◽  
Author(s):  
Sarah L. Hughes ◽  
N. Penny Holliday ◽  
Eugene Colbourne ◽  
Vladimir Ozhigin ◽  
Hedinn Valdimarsson ◽  
...  

Abstract Hughes, S. L., Holliday, N. P., Colbourne, E., Ozhigin, V., Valdimarsson, H., Østerhus, S., and Wiltshire, K. 2009. Comparison of in situ time-series of temperature with gridded sea surface temperature datasets in the North Atlantic. – ICES Journal of Marine Science, 66: 1467–1479. Analysis of the effects of climate variability and climate change on the marine ecosystem is difficult in regions where long-term observations of ocean temperature are sparse or unavailable. Gridded sea surface temperature (SST) products, based on a combination of satellite and in situ observations, can be used to examine variability and long-term trends because they provide better spatial coverage than the limited sets of long in situ time-series. SST data from three gridded products (Reynolds/NCEP OISST.v2., Reynolds ERSST.v3, and the Hadley Centre HadISST1) are compared with long time-series of in situ measurements from ICES standard sections in the North Atlantic and Nordic Seas. The variability and trends derived from the two data sources are examined, and the usefulness of the products as a proxy for subsurface conditions is discussed.


2020 ◽  
Vol 236 ◽  
pp. 111485 ◽  
Author(s):  
Emy Alerskans ◽  
Jacob L. Høyer ◽  
Chelle L. Gentemann ◽  
Leif Toudal Pedersen ◽  
Pia Nielsen-Englyst ◽  
...  

2011 ◽  
Vol 2 (2) ◽  
pp. 125 ◽  
Author(s):  
Nikolaos Skliris ◽  
Sarantis S. Sofianos ◽  
Athanasios Gkanasos ◽  
Panagiotis Axaopoulos ◽  
Anneta Mantziafou ◽  
...  

The inter-annual/decadal scale variability of the Aegean Sea Surface Temperature (SST) is investigated by means of long-term series of satellite-derived and in situ data. Monthly mean declouded SST maps are constructed over the 1985–2008 period, based on a re-analysis of AVHRR Oceans Pathfinder optimally interpolated data over the Aegean Sea. Basin-average SST time series are also constructed using the ICOADS in situ data over 1950–2006. Results indicate a small SST decreasing trend until the early nineties, and then a rapid surface warming consistent with the acceleration of the SST rise observed on the global ocean scale. Decadal-scale SST anomalies were found to be negatively correlated with the winter North Atlantic Oscillation (NAO) index over the last 60 years suggesting that along with global warming effects on the regional scale, a part of the long-term SST variability in the Aegean Sea is driven by large scale atmospheric natural variability patterns. In particular, the acceleration of surface warming in the Aegean Sea began nearly simultaneously with the NAO index abrupt shift in the mid-nineties from strongly positive values to weakly positive/negative values.


Sign in / Sign up

Export Citation Format

Share Document