scholarly journals A compilation of global bio-optical in situ data for ocean-colour satellite applications

2016 ◽  
Vol 8 (1) ◽  
pp. 235-252 ◽  
Author(s):  
André Valente ◽  
Shubha Sathyendranath ◽  
Vanda Brotas ◽  
Steve Groom ◽  
Michael Grant ◽  
...  

Abstract. A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594/PANGAEA.854832 (Valente et al., 2015).

2019 ◽  
Author(s):  
André Valente ◽  
Shubha Sathyendranath ◽  
Vanda Brotas ◽  
Steve Groom ◽  
Michael Grant ◽  
...  

Abstract. A global compilation of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (including, inter alia, MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO) and span the period from 1997 to 2018. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll-a, spectral inherent optical properties, spectral diffuse attenuation coefficients and total suspended matter. The data were from multi-project archives acquired via open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were propagated throughout the work and made available in the final table. By making the metadata available, provenance is better documented, and it is also possible to analyse each set of data separately. This paper also describes the changes that were made to the compilation in relation to the previous version (Valente et al., 2016). The compiled data are available at https://doi.org/10.1594/PANGAEA.898188.


2016 ◽  
Author(s):  
A. Valente ◽  
S. Sathyendranath ◽  
V. Brotas ◽  
S. Groom ◽  
M. Grant ◽  
...  

Abstract. A compiled set of in situ data is important to evaluate the quality of ocean-olour satellite data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GEPCO), spans between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll-a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were propagated throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594/PANGAEA.854832.


2019 ◽  
Vol 11 (3) ◽  
pp. 1037-1068 ◽  
Author(s):  
André Valente ◽  
Shubha Sathyendranath ◽  
Vanda Brotas ◽  
Steve Groom ◽  
Michael Grant ◽  
...  

Abstract. A global compilation of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (including, inter alia, MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT and GeP&CO) and span the period from 1997 to 2018. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties, spectral diffuse attenuation coefficients and total suspended matter. The data were from multi-project archives acquired via open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenization, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) was propagated throughout the work and made available in the final table. By making the metadata available, provenance is better documented, and it is also possible to analyse each set of data separately. This paper also describes the changes that were made to the compilation in relation to the previous version (Valente et al., 2016). The compiled data are available at https://doi.org/10.1594/PANGAEA.898188 (Valente et al., 2019).


2009 ◽  
Vol 26 (3) ◽  
pp. 556-569 ◽  
Author(s):  
Ananda Pascual ◽  
Christine Boone ◽  
Gilles Larnicol ◽  
Pierre-Yves Le Traon

Abstract The timeliness of satellite altimeter measurements has a significant effect on their value for operational oceanography. In this paper, an Observing System Experiment (OSE) approach is used to assess the quality of real-time altimeter products, a key issue for robust monitoring and forecasting of the ocean state. In addition, the effect of two improved geophysical corrections and the number of missions that are combined in the altimeter products are also analyzed. The improved tidal and atmospheric corrections have a significant effect in coastal areas (0–100 km from the shore), and a comparison with tide gauge observations shows a slightly better agreement with the gridded delayed-time sea level anomalies (SLAs) with two altimeters [Jason-1 and European Remote Sensing Satellite-2 (ERS-2)/Envisat] using the new geophysical corrections (mean square differences in percent of tide gauge variance of 35.3%) than those with four missions [Jason-1, ERS/Envisat, Ocean Topography Experiment (TOPEX)/Poseidoninterlaced, and Geosat Follow-On] but using the old corrections (36.7%). In the deep ocean, however, the correction improvements have little influence. The performance of fast delivery products versus delayed-time data is compared using independent in situ data (tide gauge and drifter data). It clearly highlights the degradation of real-time SLA maps versus the delayed-time SLA maps: four altimeters are needed in real time to get the similar quality performance as two altimeters in delayed time (sea level error misfit around 36%, and zonal and meridional velocity estimation errors of 27% and 33%, respectively). This study proves that the continuous improvement of geophysical corrections is very important, and that it is essential to stay above a minimum threshold of four available altimetric missions to capture the main space and time oceanic scales in fast delivery products.


2021 ◽  
Author(s):  
Marilaure Grégoire ◽  

<p>The Black Sea is a small enclosed basin where coastal regions have a large influence and mesoscale signals dominate the dynamics (the Rossby radius of deformation is about 20km). Large riverine inputs, mainly on the northwestern shelf, induce well-marked horizontal gradients in the distribution of the Black Sea salinity and optical characteristics: coastal and shelf waters have very low salinity and contain large amounts of optically active materials (e.g. coloured dissolved organic matter) and its oligotrophic deep sea has a salinity around 18.2. The presence of these contrasting water characteristics in a relatively small enclosed environment, combined with land contamination and the specificities of its atmospheric composition(e.g. high cloud coverage, aerosols) make the Black Sea a challenging area for the development of high quality satellite products. </p><p> </p><p>We present first results from a 2-year on-going ESA-funded project, EO4SIBS (Earth Observation for Science and Innovation in the Black Sea) dedicated to the development, and subsequent scientific analysis, of new algorithms and products. In particular, ocean colour products (chlorophyll-a and total suspended matter concentrations, turbidity) were produced from Sentinel 3 (S3) OLCI data combining different algorithms selected based on an automatic water mass classification procedure (case-1 versus case-2 waters). In specific areas, S3-OLCI and Sentinel 2-MSI data were merged to address local features. A revised gridded altimetry product based on 5-Hz along track data (combining Cryosat and S3 SAR) was produced and validated in the coastal zone with tide gauge data. Sea Surface Salinity was derived from the L-Band measured by SMOS and compared with in-situ surface salinity data from field sampling and Argo. </p><p> </p><p>All these products are now being integrated to further understand the Black Sea physical and biogeochemical functioning (e.g., plume and productivity patterns, mesoscale dynamics, deoxygenation). For instance, the Black Sea mesoscale dynamics are inferred from the 5-Hz altimetry product using an eddy detection and tracking algorithm. The quality of the eddy mapping is assessed by comparison with visible and infrared satellite products while the derived velocities are compared with drifters. Also, the benefit of assimilating ocean colour data in the Black Sea operational model (also known as CMEMS BS-MFC BIO) for the prediction of the Black Sea ecosystem will  be illustrated.</p><p> </p><p>Gridded products are archived as CF-compliant NetCDF files and disseminated through ncWMS protocol. In-situ data are modeled as vector points in a PostGIS database. A web portal is being implemented in order to propose an efficient spatiotemporal exploration of both data sources in a user-friendly interface, including interactive map layers and export possibilities.</p><p> </p><p>We conclude with a set of recommendations for observational requirements needed  to increase the quality of satellite products in the Black Sea and to be able to use the full potential of current and new information provided by  satellites. </p><p> </p>


2020 ◽  
Author(s):  
Irene Himmelbauer ◽  
Daniel Aberer ◽  
Lukas Schremmer ◽  
Ivana Petrakovic ◽  
Luca Zappa ◽  
...  

<p><span>The International Soil Moisture Network (ISMN, </span><span></span><span>) is an international cooperation to establish and maintain an open-source global data hosting facility, providing in-situ soil moisture data as well as accompanying soil variables. This database is an essential means for validating and improving global satellite soil moisture products as well as land surface -, climate- , and hydrological models.</span></p><p><span>For hydrological validation, the quality of used in-situ data is essential. The various independent local and regional in situ networks often do not follow standardized measurement techniques or protocols, collect their data in different units, at different depths and at various sampling rates. Besides, quality control is rarely applied and accessing the data is often not easy or feasible.</span></p><p><span>The ISMN was created to address the above-mentioned issues. Within the ISMN, in situ soil moisture measurements (surface and sub-surface) are collected, harmonized in terms of units and sampling rates, advanced quality control is applied and the data is then stored in a database and made available online, where users can download it for free. </span></p><p><span>Since its establishment in 2009 and with continuous financial support through the European Space Agency (ESA), the ISMN evolved into a widely used in situ data source growing continuously (in terms of data volume and users). Historic measurements starting in 1952 up to near–real time are available through the ISMN web portal. Currently, the ISMN consists of 60 networks with more than 2500 stations spread all over the globe. With a </span><span><span>steadily growing user community more than 3200 registered users strong</span></span><span> the value of the ISMN as a well-established and rich source of in situ soil moisture observations is well recognized. In fact, the ISMN is widely used in variety of scientific fields (e.g. climate, water, agriculture, disasters, ecosystems, weather, biodiversity, etc.). </span></p><p> <span>Our partner networks range from networks with a handful of stations to networks that are composed of over 400 sites, are supported with half yearly provider reports on statistical data about their network (e.g.: data download statistic, flagging statistic, etc.). </span></p><p><span>About 10’000 datasets are available through the web portal. However, the spatial coverage of in situ observations still needs to be improved. For example, in Africa and South America only sparse data are available. Innovative ideas, such as the inclusion of soil moisture data from low cost sensors (GROW observatory ) collected by citizen scientists, holds the potential of closing this gap, thus providing new information and knowledge.</span></p><p><span>In this session , we want to give an overview of the ISMN, its unique features and its support of data provider, who are willing to openly share their data, as well as hydrological researcher in need of freely available datasets.</span></p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Tanya L. Maurer ◽  
Joshua N. Plant ◽  
Kenneth S. Johnson

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project has deployed 194 profiling floats equipped with biogeochemical (BGC) sensors, making it one of the largest contributors to global BGC-Argo. Post-deployment quality control (QC) of float-based oxygen, nitrate, and pH data is a crucial step in the processing and dissemination of such data, as in situ chemical sensors remain in early stages of development. In situ calibration of chemical sensors on profiling floats using atmospheric reanalysis and empirical algorithms can bring accuracy to within 3 μmol O2 kg–1, 0.5 μmol NO3– kg–1, and 0.007 pH units. Routine QC efforts utilizing these methods can be conducted manually through visual inspection of data to assess sensor drifts and offsets, but more automated processes are preferred to support the growing number of BGC floats and reduce subjectivity among delayed-mode operators. Here we present a methodology and accompanying software designed to easily visualize float data against select reference datasets and assess QC adjustments within a quantitative framework. The software is intended for global use and has been used successfully in the post-deployment calibration and QC of over 250 BGC floats, including all floats within the SOCCOM array. Results from validation of the proposed methodology are also presented which help to verify the quality of the data adjustments through time.


Sign in / Sign up

Export Citation Format

Share Document