scholarly journals New approaches to dating intermittently varved sediment, Columbine lake, Colorado, USA

2021 ◽  
Author(s):  
Stephanie Harmonie Arcusa ◽  
Nicholas P. McKay ◽  
Charlotte Wiman ◽  
Sela Patterson ◽  
Samuel E. Munoz ◽  
...  

Abstract. Annually laminated lake sediment can track paleoenvironmental change at high-resolution where alternative archives are often not available. However, information about both paleoenvironmental change and chronology are often affected by indistinct and intermittent varves. We present an approach that overcomes these and other obstacles by using a quantitative varve quality index combined with a multi-core, multi-observer Bayesian varve sedimentation model that quantifies realistic under- and over-counting uncertainties while integrating information from radiometric measurements (210Pb, 137Cs, and 14C) into the chronology. We demonstrate this approach on thin sections of indistinct and intermittently varved sequences from alpine Columbine Lake, Colorado. The integrated model indicates 3137 (95 percentile highest density probability range: 2753–3375) varve years with a cumulative posterior distribution of counting uncertainties of −13/+7 % indicative of systematic observer undercounting. The sedimentary features of the thin and complex varves shift through time, from normally graded couplets to couplets interrupted with coarser sub-laminae, to inversely graded couplets. We interpret the normal grading couplets as spring nival discharge followed by winter settling, the coarser sub-laminae as high rainfall events, and the inverse grading as hyperpycnal flows and/or pulses of dust related to human impact changing the varve formation mechanism. Our novel approach provides a realistic constraint on sedimentation rates and quantifies uncertainty in varve counts by quantifying over- and under-counting uncertainties related to observer bias and the quality and variability of the sediment appearance. The approach permits the construction of a varve chronology and sedimentation rates for sites with intermittent or indistinct varves, which are likely more prevalent than sequences with distinct varves, and thus, expands the possibilities of reconstructing past environmental change with high resolution.

Author(s):  
Glen B. Haydon

High resolution electron microscopic study of negatively stained macromolecules and thin sections of tissue embedded in a variety of media are difficult to interpret because of the superimposed phase image granularity. Although all of the information concerning the biological structure of interest may be present in a defocused electron micrograph, the high contrast of large phase image granules produced by the substrate makes it impossible to distinguish the phase ‘points’ from discrete structures of the same dimensions. Theory predicts the findings; however, it does not allow an appreciation of the actual appearance of the image under various conditions. Therefore, though perhaps trivial, training of the cheapest computer produced by mass labor has been undertaken in order to learn to appreciate the factors which affect the appearance of the background in high resolution electron micrographs.


Author(s):  
M. H. Chen ◽  
C. Hiruki

Wheat spot mosaic disease was first discovered in southern Alberta, Canada, in 1956. A hitherto unidentified disease-causing agent, transmitted by the eriophyid mite, caused chlorosis, stunting and finally severe necrosis resulting in the death of the affected plants. Double membrane-bound bodies (DMBB), 0.1-0.2 μm in diameter were found to be associated with the disease.Young tissues of leaf and root from 4-wk-old infected wheat plants were fixed, dehydrated, and embedded in Spurr’s resin. Serial sections were collected on slot copper grids and stained. The thin sections were then examined with a Hitachi H-7000 TEM at 75 kV. The membrane structure of the DMBBs was studied by numbering them individually and tracing along the sections to see any physical connection with endoplasmic reticulum (ER) membranes. For high resolution scanning EM, a modification of Tanaka’s method was used. The specimens were examined with a Hitachi Model S-570 SEM in its high resolution mode at 20 kV.


Author(s):  
Abdallah Naser ◽  
Ahmad Lotfi ◽  
Joni Zhong

AbstractHuman distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras have serious concerns about people’s privacy in indoor environments, and high-resolution thermal cameras are costly. This paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance estimators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor environments, sensor placements with different participants. This paper shows a median overall error of $$\pm 0.2$$ ± 0.2  m in continuous-based estimation and $$96.8\%$$ 96.8 % achieved-accuracy in discrete distance estimation.


Author(s):  
Marta M. Civitani ◽  
Stefano Basso ◽  
Salvatore Incorvaia ◽  
Luigi Lessio ◽  
Giovanni Pareschi ◽  
...  
Keyword(s):  
X Ray ◽  

2014 ◽  
Vol 18 (11) ◽  
pp. 4423-4435 ◽  
Author(s):  
M. Huebsch ◽  
O. Fenton ◽  
B. Horan ◽  
D. Hennessy ◽  
K. G. Richards ◽  
...  

Abstract. Nitrate (NO3−) contamination of groundwater associated with agronomic activity is of major concern in many countries. Where agriculture, thin free draining soils and karst aquifers coincide, groundwater is highly vulnerable to nitrate contamination. As residence times and denitrification potential in such systems are typically low, nitrate can discharge to surface waters unabated. However, such systems also react quickest to agricultural management changes that aim to improve water quality. In response to storm events, nitrate concentrations can alter significantly, i.e. rapidly decreasing or increasing concentrations. The current study examines the response of a specific karst spring situated on a grassland farm in South Ireland to rainfall events utilising high-resolution nitrate and discharge data together with on-farm borehole groundwater fluctuation data. Specifically, the objectives of the study are to formulate a scientific hypothesis of possible scenarios relating to nitrate responses during storm events, and to verify this hypothesis using additional case studies from the literature. This elucidates the controlling key factors that lead to mobilisation and/or dilution of nitrate concentrations during storm events. These were land use, hydrological condition and karstification, which in combination can lead to differential responses of mobilised and/or diluted nitrate concentrations. Furthermore, the results indicate that nitrate response in karst is strongly dependent on nutrient source, whether mobilisation and/or dilution occur and on the pathway taken. This will have consequences for the delivery of nitrate to a surface water receptor. The current study improves our understanding of nitrate responses in karst systems and therefore can guide environmental modellers, policy makers and drinking water managers with respect to the regulations of the European Union (EU) Water Framework Directive (WFD). In future, more research should focus on the high-resolution monitoring of karst aquifers to capture the high variability of hydrochemical processes, which occur at time intervals of hours to days.


2018 ◽  
Vol 34 (1) ◽  
pp. 100-114 ◽  
Author(s):  
Magnus M. Haaland ◽  
Matthias Czechowski ◽  
Frank Carpentier ◽  
Mathieu Lejay ◽  
Bruno Vandermeulen

Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Sarah Stanley

Precipitation data and high-resolution modeling suggest that extreme rainfall events under a changing climate will be shorter, more intense, and more widely spread out.


Sign in / Sign up

Export Citation Format

Share Document