scholarly journals Application of ground-penetrating radar technique to evaluate the waterfront location in hardened concrete

2016 ◽  
Author(s):  
Isabel Rodríguez-Abad ◽  
Gilles Klysz ◽  
Rosa Martínez-Sala ◽  
Jean Paul Balayssac ◽  
Jesús Mené-Aparicio

Abstract. The long term performance of concrete structures is directly tied to two factors: concrete durability and strength. When assessing the durability of concrete structures, the study of the water penetration is paramount, because almost all reactions like corrosion, alkali-silica, sulfate, etc., which produce their deterioration, require the presence of water. Ground-penetrating radar (GPR) has shown to be very sensitive to water variations. On this basis, the objective of this experimental study is, firstly, to analyze the correlation between the water penetration depth in concrete samples and the GPR wave parameters. To do this, the samples were immersed into water for different time intervals and the wave parameters were obtained from signals registered when the antenna was placed on the immersed surface of the samples. Secondly, a procedure has been developed to be able to determine, from those signals, the reliability in the detection and location of waterfront depths. The results have revealed that GPR may have an enormous potential in this field, because excellent agreements were found between the correlated variables. In addition, when comparing the waterfront depths calculated from GPR measurements and those visually registered after breaking the samples, we observed that they totally agreed when the waterfront was more than 4 cm depth.

2016 ◽  
Vol 5 (2) ◽  
pp. 567-574 ◽  
Author(s):  
Isabel Rodríguez-Abad ◽  
Gilles Klysz ◽  
Rosa Martínez-Sala ◽  
Jean Paul Balayssac ◽  
Jesús Mené-Aparicio

Abstract. The long-term performance of concrete structures is directly tied to two factors: concrete durability and strength. When assessing the durability of concrete structures, the study of the water penetration is paramount, because almost all reactions like corrosion, alkali–silica, sulfate, etc., which produce their deterioration, require the presence of water. Ground-penetrating radar (GPR) has shown to be very sensitive to water variations. On this basis, the objective of this experimental study is, firstly, to analyze the correlation between the water penetration depth in concrete samples and the GPR wave parameters. To do this, the samples were immersed into water for different time intervals and the wave parameters were obtained from signals registered when the antenna was placed on the immersed surface of the samples. Secondly, a procedure has been developed to be able to determine, from those signals, the reliability in the detection and location of waterfront depths. The results have revealed that GPR may have an enormous potential in this field, because excellent agreements were found between the correlated variables. In addition, when comparing the waterfront depths calculated from GPR measurements and those visually registered after breaking the samples, we observed that they totally agreed when the waterfront was more than 4 cm depth.


2019 ◽  
Vol 11 (16) ◽  
pp. 1864 ◽  
Author(s):  
Anita Bernatek-Jakiel ◽  
Marta Kondracka

Soil piping leads to land degradation in almost all morphoclimatic regions. However, the detection of soil pipes is still a methodological challenge. Therefore, this study aims at testing ground penetrating radar (GPR) to identify soil pipes and to present the complexity of soil pipe networks. The GPR surveys were conducted at three sites in the Bieszczady Mountains (SE Poland), where pipes develop in Cambisols. In total, 36 GPR profiles longitudinal and transverse to piping systems were made and used to provide spatial visualization of pipe networks. Soil pipes were identified as reflection hyperbolas on radargrams, which were verified with the surface indicators of piping, i.e., sagging of the ground and the occurrence of pipe roof collapses. Antennas of 500 MHz and 800 MHz were tested, which made possible the penetration of the subsurface up to 3.2 m and 2 m, respectively. Concerning ground properties, antenna frequencies and processing techniques, there was a potential possibility to detect pipes with a minimum diameter of 3.5 cm (using the antenna of lower frequency), and 2.2 cm (with the antenna of higher frequency). The results have proved that soil pipes meander horizontally and vertically and their networks become more complicated and extensive down the slope. GPR is a useful method to detect soil pipes, although it requires field verification and the proper selection of antenna frequency.


2013 ◽  
Vol 639-640 ◽  
pp. 1051-1055 ◽  
Author(s):  
Xian Yan Zhou ◽  
Jian Luan ◽  
Da Hai Zhang

With the wide applications of post-tensioned concrete structures, the grouting conditions of tendon ducts are paid more attentions. In order to accurately assess the internal grouting quality of the grouted tendon ducts and certainly guarantee the lifetime of prestressed concrete structures Ground Penetrating Radar (GPR), which is a kind of nondestructive testing (NDT) method, has been applied to inspect and evaluate qualitatively and quantitatively on the grouting defects, respectively. A series of in-house tests were carried out for simulating the defects of tendon ducts by foams with different sizes. The results show that the GPR technic was one of the optimal methods for inspecting the internal grouting quality of grouted tendon ducts for post-tensioned concrete structures.


Sign in / Sign up

Export Citation Format

Share Document