pipe networks
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 71)

H-INDEX

28
(FIVE YEARS 5)

Vestnik IGEU ◽  
2021 ◽  
pp. 70-78
Author(s):  
S.V. Kosyakov ◽  
A.M. Sadykov ◽  
V.V. Sennikov ◽  
A.I. Tikhonov

Currently, information systems to get data of metering devices are introduced to calculate the consumed thermal energy. The metering devices are installed at the thermal station of the consumers. However, the processing of these data is usually limited to the monthly data collection to calculate the payments and to monitor the output of the observed parameters beyond the established boundaries. The urgent issue is the possibility to use these data for the in-depth study of the processes, and, in particular, to detect district heating pipe network leakage. The authors have used both the methods and tools to model and analyze the operating modes of district heating pipe networks, methods to collect and monitor data of heat supply metering devices, methods to model district heating pipe networks in the geoinformation systems environment. The authors have proposed the method to detect the sections of the heat network where a heat medium leak has occurred. The difference of the method is the use only of the readings of the metering devices installed at consumers. The limitations of the application of the method and its implementation in geoinformation system environment are considered. An example is given to illustrate the possibility to detect the location of leakage based on the analysis of real data of the house heat metering devices collected during leakage and leakage elimination. Practical application of the developed method is discussed by the example of a real situation of leakage at the section of the heat network of the ISPU boiler house. The results obtained have confirmed the possibility to detect localization of leakage in heating networks based on the analysis of meter readings installed at consumers. The developed method can be applied in information systems to monitor the operating modes of district heating networks to search the places of accidents.


2021 ◽  
Author(s):  
Yu Gu ◽  
Wei Tu ◽  
Qingquan Li ◽  
Tianhong Zhao ◽  
Dingyi Zhao ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinzhang Jia ◽  
Yinuo Chen ◽  
Guangbo Che ◽  
Jinchao Zhu ◽  
Fengxiao Wang ◽  
...  

AbstractTo explore the overpressure evolution laws and flame propagation characteristics in complex pipe networks after the addition of hydrogen to methane, we experimentally studied the explosive pressure wave and flame wave propagation laws for three different premixed gas mixtures with hydrogen-methane concentrations of 0, 10% and 20% when the equivalence ratio was 1. Experimental results indicate that the maximum explosion overpressure of the premixed gas increases with increasing distance from the explosion source, and it shows a gradually decreasing trend. In the complex pipe network, an overpressure zone is formed in the B–E–H and D–E sections of the network. The flame temperature is superimposed with the superimposition of the pressure, showing a trend of first increasing, then decreasing, then increasing, and finally decreasing in the complex pipe network. The flame arrival time increases with increasing distance, and the maximum flame speed shows a decreasing trend. The peak overpressure and maximum flame velocity of the premixed gas under a hydrogen volume fraction of 20% are 1.266 MPa and 168 m/s. The experimental research results could provide important theoretical guidelines for the prevention and control of fuel gas explosions in urban pipe networks.


2021 ◽  
Author(s):  
Shuming Liang ◽  
Zhidong Li ◽  
Bin Liang ◽  
Yu Ding ◽  
Yang Wang ◽  
...  

2021 ◽  
Author(s):  
Martin Haug ◽  
Felix Lorenz ◽  
Lauritz Thamsen

2021 ◽  
Vol 147 (10) ◽  
pp. 04021068
Author(s):  
Wei Zeng ◽  
Aaron C. Zecchin ◽  
Benjamin S. Cazzolato ◽  
Angus R. Simpson ◽  
Jinzhe Gong ◽  
...  

Author(s):  
E. Okwori ◽  
Y. Pericault ◽  
R. Ugarelli ◽  
M. Viklander ◽  
A. Hedström

Abstract Analytical tools used in infrastructure asset management of urban water pipe networks are reliant on asset data. Traditionally, data required by analytical tools has not been collected by most water utilities because it has not been needed. The data that is collected might be characterised by low availability, integrity and consistency. A process is required to support water utilities in assessing the accuracy and completeness of their current data management approach and defining improvement pathways in relation to their objectives. This study proposes a framework to enable increased data-driven asset management in pipe networks. The theoretical basis of the framework was a literature review of data management for pipe network asset management and its link to the coherence of set objectives. A survey to identify the current state of data management practice and challenges of asset management implementation in five Swedish water utilities and three focus group workshops with the same utilities was carried out. The main findings of this research were that the quality of pipe network datasets and lack of interoperability between asset management tools was a driver for creating data silos between asset management levels, which may hinder the implementation of data-driven asset management. Furthermore, these findings formed the basis for the proposed conceptual framework. The suggested framework aims to support the selection, development and adoption of improvement pathways to enable increased data-driven asset management in municipal pipe networks. Results from a preliminary application of the proposed framework are also presented.


Sign in / Sign up

Export Citation Format

Share Document