water penetration
Recently Published Documents


TOTAL DOCUMENTS

568
(FIVE YEARS 87)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Arkady N. Ponomarev ◽  
Elena I. Melnikova ◽  
Ekaterina V. Bogdanova ◽  
Daria A. Paveleva

The purpose of this research was to studythe ability of whey protein concentrates (WPC) and whey permeate produced with ultrafiltration of cheese whey to rehydrate. The products studied were cheese whey concentrate witha PDM percentage of 80% (WPC-80), and cheese whey permeate, both produced under the conditions of the PJSC Dairy “Voronezhsky”.WPC-80 and the whey permeate dissolution processes were studied using microscopy. Water-impermeable hydrophobic layers were formed at the boundary, preventing water penetration into dry particles. The result was a higher dissolution timeforWPC-80 compared with whey permeate. When WPC-80 came into contact with water,it initially formed an obtuse wetting angle with a slow change over time. Whey permeate reached the equilibrium wetting angle more quickly. Quickreconditioning of WPC moisture content required avoiding capillary penetration of water, which created a turbulent liquid flow. The application of these ingredients in different food industry areas can reduce the costs for finished products, contribute to cost-effectiveness, increase the total production, and reduce environmental risks. Keywords: whey protein concentrate, whey permeate powder, water-wetting, dissolution


2021 ◽  
Vol 920 (1) ◽  
pp. 012005
Author(s):  
M Z A M Zahid ◽  
B H A Bakar ◽  
F M Nazri ◽  
H Alasmari ◽  
M F P M Latiff ◽  
...  

Abstract This current study attempts to investigate the mechanical, durability as well as rheology properties of Ultra-High Performance Concrete (UHPC) with low cement content and using coarse aggregate. The cement content used in UHPC mix in current study was 800 kg/m3. The slump flow, compressive strength, splitting tensile strength, modulus of elasticity, water absorption and water penetration tests were conducted to determine the workability, mechanical and durability properties of explored UHPC mixture. The test results show that the above properties were exceptional and comparable with other UHPC mixtures.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012053
Author(s):  
V Gori ◽  
V Marincioni ◽  
H Altamirano-Medina

Abstract Cavity wall is one of the most common construction types in temperate maritime climates, including the UK. However, water penetration may lead to damp within the structure, freeze-thaw damage at the outer surface and a reduction in thermal resistance. The magnitude of wetting effects on the energy performance of cavity walls is still unclear, with potentially significant implications for climate-change-mitigation strategies. This paper investigates the thermophysical performance of uninsulated and insulated cavity walls and its degradation as the element is wettened. Experiments were performed in a hygrothermal laboratory where two cavity-wall specimens (one of which coated with external waterproofing treatment) were tested under a high wind-driven rain exposure. Changes in the thermophysical performance between dry and wet conditions were evaluated through U-value testing and Bayesian inference. Substantial U-value increase was observed for wet uninsulated specimens (compared to dry conditions); conversely, closer U-value ranges were obtained when insulated with EPS grey beads. Moreover, latent-heat effects through the external masonry leaf of the untreated specimen were predicted by the Bayesian framework. Results suggest a negligible efficacy of waterproofing surface treatments as strategies for the reduction of heat transfer within the element, and possible effects of these agents on the evaporative and drying process.


2021 ◽  
Vol MA2021-02 (36) ◽  
pp. 1029-1029
Author(s):  
Takaya Sugahara ◽  
Takashi Sasabe ◽  
Hiroshi Naito ◽  
Manabu Kodama ◽  
Shuichiro Hirai

2021 ◽  
Author(s):  
Ahmed Abd El aal

Abstract This research presents a new method for determining the impact of healthy personal protection materials HPPM stripes, such as surgical masks, protective suits, overhead and safety foot shoes, on the durability, physicomechanical characteristics of concrete for use in architectural forms. As a result of the current global epidemic caused by Coronavirus, the use of (HPPM) such as surgical masks, protective suits, overhead and safety foot shoes has increased considerably (COVID-19). COVID-19's second and third waves are currently affecting various countries, necessitating the use of face masks (FM). As a result, millions of single FS have been discharged into the wild, washing up on beaches, floating beneath the seas, and winding up in hazardous locations. The effect of stripes fibers on physicomechanical aspects of concrete, such as workability, UCS, FS, IMs, spalling, and AbR; sorptivity, Sw; n; water penetration, permeability, and economic and eco-friendly aspects, was also discussed. With a focus on HPPM especially single-use face masks, this research investigates an innovative way for incorporating pandemic waste into concrete structures. SEM and XRD were also employed to analyze microstructures and the interfacial transition zone, as well as to identify the elements. HPPM was found to have a pore-blocking effect, which reduced permeability and capillary porosity. It was also discovered that the best concentrations of HPPM, particularly masks, were applied by volume at 0 %, 0.1, 1.5, 2.0, and 2.5 %. The usage of single-use face masks increased the strength qualities and overall performance of the concrete samples. The tendency of growing strength began to disappear around 2%. The results of this investigation show that stripe content has no effect on compressive strength. The stripe, on the other hand, is critical in determining the flexural strength of concrete. A SEM was used to analyze the microstructure of concrete. HPPM fibers are discovered to act as bridges across cracks, enhancing the matrixes transfer capability. From a technological and environmental standpoint, the study found that using healthy personal protection materials fiber in the production of concrete is viable.


2021 ◽  
Vol 104 (8) ◽  
pp. 93-99
Author(s):  
Takaya Sugahara ◽  
Takashi Sasabe ◽  
Hiroshi Naito ◽  
Manabu Kodama ◽  
Shuichiro Hirai

Sign in / Sign up

Export Citation Format

Share Document