scholarly journals ICONGETM v1.0 – flexible NUOPC-driven two-way coupling via ESMF exchange grids between the unstructured-grid atmosphere model ICON and the structured-grid coastal ocean model GETM

2021 ◽  
Vol 14 (8) ◽  
pp. 4843-4863
Author(s):  
Tobias Peter Bauer ◽  
Peter Holtermann ◽  
Bernd Heinold ◽  
Hagen Radtke ◽  
Oswald Knoth ◽  
...  

Abstract. Two-way model coupling is important for representing the mutual interactions and feedbacks between atmosphere and ocean dynamics. This work presents the development of the two-way coupled model system ICONGETM, consisting of the atmosphere model ICON and the ocean model GETM. ICONGETM is built on the latest NUOPC coupling software with flexible data exchange and conservative interpolation via ESMF exchange grids. With ICON providing a state-of-the-art kernel for numerical weather prediction on an unstructured mesh and GETM being an established coastal ocean model, ICONGETM is especially suited for high-resolution studies. For demonstration purposes the newly developed model system has been applied to a coastal upwelling scenario in the central Baltic Sea.

2012 ◽  
Vol 140 (4) ◽  
pp. 1285-1306 ◽  
Author(s):  
Yu-Heng Tseng ◽  
Shou-Hung Chien ◽  
Jiming Jin ◽  
Norman L. Miller

The air–land–sea interaction in the vicinity of Monterey Bay, California, is simulated and investigated using a new Integrated Regional Model System (I-RMS). This new model realistically resolves coastal processes and submesoscale features that are poorly represented in atmosphere–ocean general circulation models where systematic biases are seen in the long-term model integration. The current I-RMS integrates version 3.1 of the Weather Research and Forecasting Model and version 3.0 of the Community Land Model with an advanced coastal ocean model, based on the nonhydrostatic Monterey Bay Area Regional Ocean Model. The daily land–sea-breeze circulations and the Santa Cruz eddy are fully resolved using high-resolution grids in the coastal margin. In the ocean, coastal upwelling and submesoscale gyres are also well simulated with this version of the coupled I-RMS. Comparison with observations indicates that the high-resolution, improved representation of ocean dynamics in the I-RMS increases the surface moisture flux and the resulting lower-atmospheric water vapor, a primary controlling mechanism for the enhancement of regional coastal fog formation, particularly along the West Coast of the conterminous United States. The I-RMS results show the importance of detailed ocean feedbacks due to coastal upwelling in the marine atmospheric boundary layer.


2020 ◽  
Author(s):  
Tobias Peter Bauer ◽  
Knut Klingbeil ◽  
Peter Holtermann ◽  
Bernd Heinold ◽  
Hagen Radtke ◽  
...  

Abstract. Coupled atmosphere-ocean models are developed for process understanding at the air-sea interface. Over the last 20 years, there have been studies involving simulations in the range of sub-annual simulations to climate scenarios. The development of coupled models highly depends on the kind and quality of the required data exchange between the model interfaces. This work achieved the development of a two-way coupled atmosphere-ocean model ICONGETM with flexible data exchange via exchange grids provided by the widely used ESMF regridding package. The regridding of flux data between the unstructured atmosphere model ICON and the structured regional ocean model GETM is conducted via these exchange grids. The newly developed model ICONGETM has been demonstrated for a coastal upwelling scenario in the Central Baltic Sea.


2017 ◽  
Vol 29 (4) ◽  
pp. 679-690 ◽  
Author(s):  
Xu-dong Zhao ◽  
Shu-xiu Liang ◽  
Zhao-chen Sun ◽  
Xi-zeng Zhao ◽  
Jia-wen Sun ◽  
...  

Oceanography ◽  
2006 ◽  
Vol 19 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Changsheng Chen ◽  
Roberet Beardsley ◽  
Geoffrey Cowles

2015 ◽  
Vol 28 (23) ◽  
pp. 9409-9432 ◽  
Author(s):  
R. Justin Small ◽  
Enrique Curchitser ◽  
Katherine Hedstrom ◽  
Brian Kauffman ◽  
William G. Large

Abstract Of all the major coastal upwelling systems in the world’s oceans, the Benguela, located off southwest Africa, is the one that climate models find hardest to simulate well. This paper investigates the sensitivity of upwelling processes, and of sea surface temperature (SST), in this region to resolution of the climate model and to the offshore wind structure. The Community Climate System Model (version 4) is used here, together with the Regional Ocean Modeling System. The main result is that a realistic wind stress curl at the eastern boundary, and a high-resolution ocean model, are required to well simulate the Benguela upwelling system. When the wind stress curl is too broad (as with a 1° atmosphere model or coarser), a Sverdrup balance prevails at the eastern boundary, implying southward ocean transport extending as far as 30°S and warm advection. Higher atmosphere resolution, up to 0.5°, does bring the atmospheric jet closer to the coast, but there can be too strong a wind stress curl. The most realistic representation of the upwelling system is found by adjusting the 0.5° atmosphere model wind structure near the coast toward observations, while using an eddy-resolving ocean model. A similar adjustment applied to a 1° ocean model did not show such improvement. Finally, the remote equatorial Atlantic response to restoring SST in a broad region offshore of Benguela is substantial; however, there is not a large response to correcting SST in the narrow coastal upwelling zone alone.


2020 ◽  
Vol 151 ◽  
pp. 101634 ◽  
Author(s):  
Wei Pan ◽  
Stephan C. Kramer ◽  
Tuomas Kärnä ◽  
Matthew D. Piggott

2019 ◽  
Vol 7 (6) ◽  
pp. 185
Author(s):  
Manuel Valera ◽  
Mary P. Thomas ◽  
Mariangel Garcia ◽  
Jose E. Castillo

The General Curvilinear Coastal Ocean Model (GCCOM) is a 3D curvilinear, structured-mesh, non-hydrostatic, large-eddy simulation model that is capable of running oceanic simulations. GCCOM is an inherently computationally expensive model: it uses an elliptic solver for the dynamic pressure; meter-scale simulations requiring memory footprints on the order of 10 12 cells and terabytes of output data. As a solution for parallel optimization, the Fortran-interfaced Portable–Extensible Toolkit for Scientific Computation (PETSc) library was chosen as a framework to help reduce the complexity of managing the 3D geometry, to improve parallel algorithm design, and to provide a parallelized linear system solver and preconditioner. GCCOM discretizations are based on an Arakawa-C staggered grid, and PETSc DMDA (Data Management for Distributed Arrays) objects were used to provide communication and domain ownership management of the resultant multi-dimensional arrays, while the fully curvilinear Laplacian system for pressure is solved by the PETSc linear solver routines. In this paper, the framework design and architecture are described in detail, and results are presented that demonstrate the multiscale capabilities of the model and the parallel framework to 240 cores over domains of order 10 7 total cells per variable, and the correctness and performance of the multiphysics aspects of the model for a baseline experiment stratified seamount.


Sign in / Sign up

Export Citation Format

Share Document