scholarly journals Modeling Air–Land–Sea Interactions Using the Integrated Regional Model System in Monterey Bay, California

2012 ◽  
Vol 140 (4) ◽  
pp. 1285-1306 ◽  
Author(s):  
Yu-Heng Tseng ◽  
Shou-Hung Chien ◽  
Jiming Jin ◽  
Norman L. Miller

The air–land–sea interaction in the vicinity of Monterey Bay, California, is simulated and investigated using a new Integrated Regional Model System (I-RMS). This new model realistically resolves coastal processes and submesoscale features that are poorly represented in atmosphere–ocean general circulation models where systematic biases are seen in the long-term model integration. The current I-RMS integrates version 3.1 of the Weather Research and Forecasting Model and version 3.0 of the Community Land Model with an advanced coastal ocean model, based on the nonhydrostatic Monterey Bay Area Regional Ocean Model. The daily land–sea-breeze circulations and the Santa Cruz eddy are fully resolved using high-resolution grids in the coastal margin. In the ocean, coastal upwelling and submesoscale gyres are also well simulated with this version of the coupled I-RMS. Comparison with observations indicates that the high-resolution, improved representation of ocean dynamics in the I-RMS increases the surface moisture flux and the resulting lower-atmospheric water vapor, a primary controlling mechanism for the enhancement of regional coastal fog formation, particularly along the West Coast of the conterminous United States. The I-RMS results show the importance of detailed ocean feedbacks due to coastal upwelling in the marine atmospheric boundary layer.

2021 ◽  
Author(s):  
Julie Deshayes

<p>When comparing realistic simulations produced by two ocean general circulation models, differences may emerge from alternative choices in boundary conditions and forcings, which alters our capacity to identify the actual differences between the two models (in the equations solved, the discretization schemes employed and/or the parameterizations introduced). The use of idealised test cases (idealized configurations with analytical boundary conditions and forcings, resolving a given set of equations) has proven efficient to reveal numerical bugs, determine advantages and pitfalls of certain numerical choices, and highlight remaining challenges. I propose to review historical progress enabled by the use of idealised test cases, and promote their utilization when assessing ocean dynamics as represented by an ocean model. For the latter, I would illustrate my talk using illustrations from my own research activities using NEMO in various contexts. I also see idealised test cases as a promising training tool for inexperienced ocean modellers, and an efficient solution to enlarge collaboration with experts in adjacent disciplines, such as mathematics, fluid dynamics and computer sciences.</p>


2021 ◽  
Vol 14 (8) ◽  
pp. 4843-4863
Author(s):  
Tobias Peter Bauer ◽  
Peter Holtermann ◽  
Bernd Heinold ◽  
Hagen Radtke ◽  
Oswald Knoth ◽  
...  

Abstract. Two-way model coupling is important for representing the mutual interactions and feedbacks between atmosphere and ocean dynamics. This work presents the development of the two-way coupled model system ICONGETM, consisting of the atmosphere model ICON and the ocean model GETM. ICONGETM is built on the latest NUOPC coupling software with flexible data exchange and conservative interpolation via ESMF exchange grids. With ICON providing a state-of-the-art kernel for numerical weather prediction on an unstructured mesh and GETM being an established coastal ocean model, ICONGETM is especially suited for high-resolution studies. For demonstration purposes the newly developed model system has been applied to a coastal upwelling scenario in the central Baltic Sea.


2021 ◽  
Author(s):  
Luca Famooss Paolini ◽  
Alessio Bellucci ◽  
Paolo Ruggieri ◽  
Panos Athanasiadis ◽  
Silvio Gualdi

<p>Western boundary currents transport a large amount of heat from the Tropics toward higher latitudes; furthermore they are characterized by a strong sea surface temperature (SST) gradient, which anchors zones of intense upward motion extending up to the upper-troposphere and shapes zones of intense baroclinic eddy activity (storm tracks). For such reasons they have been shown to be fundamental in influencing the climate of the Northern Hemisphere and its variability, and a potentially relevant source of atmospheric predictability. </p><p> </p><p>General circulation models show deficiencies in simulating the observed atmospheric response to SST front variability. The atmospheric horizontal resolution has been recently proposed as a key element in understanding such differences. However, the number of studies on this subject is still limited. Furthermore, a multi-model analysis to systematically investigate differences between low-resolution and high-resolution atmospheric response to oceanic forcing is still lacking. </p><p> </p><p>The present work has the objective to fill this gap, analysing the atmospheric response to Gulf Stream SST front shifting using data from recent High Resolution Model Intercomparison Project (HighResMIP). This project was designed with the specific objective of investigating the impact of increased model horizontal resolution on the representation of the observed climate. Ensembles of historical simulations performed with three atmospheric general circulation models (AGCMs) have been analysed, each conducted with a low-resolution (LR, about 1°) and a high-resolution (HR, about 0.25°) configuration. AGCMs have been forced with observed SSTs (HadISST2 dataset), available at daily frequency on a 0.25° grid, during 1950–2014. </p><p><br>Results show atmospheric responses to the SST-induced diabatic heating anomalies that are strongly resolution dependent. In LR simulations a low-pressure anomaly is present downstream of the SST anomaly, while the diabatic heating anomaly is mainly balanced by meridional advection of air coming from higher latitudes, as expected for an extra-tropical shallow heat source. In contrast, HR simulations generate a high-pressure anomaly downstream of the SST anomaly, thus driving positive temperature advection from lower latitudes (not balancing diabatic heating). Along the vertical direction, both in LR and HR simulation, the diabatic heating in the interior of the atmosphere is balanced by upward motion south of GS SST front and downward motion north and further south of the Gulf Stream. Finally, LR simulations show a reduction in storm-track activity over the North Atlantic, whereas HR simulations show a meridional displacement of the storm-track considerably larger (yet in the same direction) than that of the SST front. HR simulations reproduce the atmospheric response obtained from observations, albeit weaker. This is a hint for the existence of a positive feedback between ocean and atmosphere, as proposed in previous studies. These findings are qualitatively consistent with previous results in literature and, leveraging on recent coordinated modelling efforts, shed light on the effective role of atmospheric horizontal resolution in modelling the atmospheric response to extra-tropical oceanic forcing.</p>


2019 ◽  
Author(s):  
Allison C. Michaelis ◽  
Gary M. Lackmann ◽  
Walter A. Robinson

Abstract. We present multi-seasonal simulations representative of present-day and future thermodynamic environments using the global Model for Prediction Across Scales-Atmosphere (MPAS) version 5.1 with high resolution (15 km) throughout the Northern Hemisphere. We select ten simulation years with varying phases of El Niño-Southern Oscillation (ENSO) and integrate each for 14.5 months. We use analysed sea surface temperature (SST) patterns for present-day simulations. For the future climate simulations, we alter present-day SSTs by applying monthly-averaged temperature changes derived from a 20-member ensemble of Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs) following the Representative Concentration Pathway (RCP) 8.5 emissions scenario. Daily sea ice fields, obtained from the monthly-averaged CMIP5 ensemble mean sea ice, are used for present-day and future simulations. The present-day simulations provide a reasonable reproduction of large-scale atmospheric features in the Northern Hemisphere such as the wintertime midlatitude storm tracks, upper-tropospheric jets, and maritime sea-level pressure features as well as annual precipitation patterns across the tropics. The simulations also adequately represent tropical cyclone (TC) characteristics such as strength, spatial distribution, and seasonal cycles for most of Northern Hemispheric basins. These results demonstrate the applicability of these model simulations for future studies examining climate change effects on various Northern Hemispheric phenomena, and, more generally, the utility of MPAS for studying climate change at spatial scales generally unachievable in GCMs.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 761 ◽  
Author(s):  
Theodoros Katopodis ◽  
Iason Markantonis ◽  
Nadia Politi ◽  
Diamando Vlachogiannis ◽  
Athanasios Sfetsos

In the context of climate change and growing energy demand, solar technologies are considered promising solutions to mitigate Greenhouse Gas (GHG) emissions and support sustainable adaptation. In Greece, solar power is the second major renewable energy, constituting an increasingly important component of the future low-carbon energy portfolio. In this work, we propose the use of a high-resolution regional climate model (Weather Research and Forecasting model, WRF) to generate a solar climate atlas for the near-term climatological future under the Representative Concentration Pathway (RCPs) 4.5 and 8.5 scenarios. The model is set up with a 5 × 5 km2 spatial resolution, forced by the ERA-INTERIM for the historic (1980–2004) period and by the EC-EARTH General Circulation Models (GCM) for the future (2020–2044). Results reaffirm the high quality of solar energy potential in Greece and highlight the ability of the WRF model to produce a highly reliable future climate solar atlas. Projected changes between the annual historic and future RCPs scenarios indicate changes of the annual Global Horizontal Irradiance (GHI) in the range of ±5.0%. Seasonal analysis of the GHI values indicates percentage changes in the range of ±12% for both scenarios, with winter exhibiting the highest seasonal increases in the order of 10%, and autumn the largest decreases. Clear-sky fraction fclear projects increases in the range of ±4.0% in eastern and north continental Greece in the future, while most of the Greek marine areas might expect above 220 clear-sky days per year.


2018 ◽  
Vol 35 (3) ◽  
pp. 503-521 ◽  
Author(s):  
Mar M. Flexas ◽  
Martina I. Troesch ◽  
Steve Chien ◽  
Andrew F. Thompson ◽  
Selina Chu ◽  
...  

ABSTRACTSubmesoscale fronts arising from mesoscale stirring are ubiquitous in the ocean and have a strong impact on upper-ocean dynamics. This work presents a method for optimizing the sampling of ocean fronts with autonomous vehicles at meso- and submesoscales, based on a combination of numerical forecast and autonomous planning. This method uses a 48-h forecast from a real-time high-resolution data-assimilative primitive equation ocean model, feature detection techniques, and a planner that controls the observing platform. The method is tested in Monterey Bay, off the coast of California, during a 9-day experiment focused on sampling subsurface thermohaline-compensated structures using a Seaglider as the ocean observing platform. Based on model estimations, the sampling “gain,” defined as the magnitude of isopycnal tracer variability sampled, is 50% larger in the feature-chasing case with respect to a non-feature-tracking scenario. The ability of the model to reproduce, in space and time, thermohaline submesoscale features is evaluated by quantitatively comparing the model and glider results. The model reproduces the vertical (~50–200 m thick) and lateral (~5–20 km) scales of subsurface subducting fronts and near-bottom features observed in the glider data. The differences between model and glider data are, in part, attributed to the selected glider optimal interpolation parameters and to uncertainties in the forecasting of the location of the structures. This method can be exported to any place in the ocean where high-resolution data-assimilative model output is available, and it allows for the incorporation of multiple observing platforms.


2006 ◽  
Vol 134 (3) ◽  
pp. 759-771 ◽  
Author(s):  
K. Haines ◽  
J. D. Blower ◽  
J-P. Drecourt ◽  
C. Liu ◽  
A. Vidard ◽  
...  

Abstract Assimilation of salinity into ocean and climate general circulation models is a very important problem. Argo data now provide far more salinity observations than ever before. In addition, a good analysis of salinity over time in ocean reanalyses can give important results for understanding climate change. Here it is shown from the historical ocean database that over large regions of the globe (mainly midlatitudes and lower latitudes) variance of salinity on an isotherm S(T) is often less than variance measured at a particular depth S(z). It is also shown that the dominant temporal variations in S(T) occur more slowly than variations in S(z), based on power spectra from the Bermuda time series. From ocean models it is shown that the horizontal spatial covariance of S(T) often has larger scales than S(z). These observations suggest an assimilation method based on analyzing S(T). An algorithm for assimilating salinity data on isotherms is then presented, and it is shown how this algorithm produces orthogonal salinity increments to those produced during the assimilation of temperature profiles. It is argued that the larger space and time scales can be used for the S(T) assimilation, leading to better use of scarce salinity observations. Results of applying the salinity assimilation algorithm to a single analysis time within the ECMWF seasonal forecasting ocean model are also shown. The separate salinity increments coming from temperature and salinity data are identified, and the independence of these increments is demonstrated. Results of an ocean reanalysis with this method will appear in a future paper.


Sign in / Sign up

Export Citation Format

Share Document