scholarly journals Development of WRF/CUACE v1.0 model and its preliminary application in simulating air quality in China

2021 ◽  
Vol 14 (2) ◽  
pp. 703-718 ◽  
Author(s):  
Lei Zhang ◽  
Sunling Gong ◽  
Tianliang Zhao ◽  
Chunhong Zhou ◽  
Yuesi Wang ◽  
...  

Abstract. The development of chemical transport models with advanced physics and chemical schemes could improve air-quality forecasts. In this study, the China Meteorological Administration Unified Atmospheric Chemistry Environment (CUACE) model, a comprehensive chemistry module incorporating gaseous chemistry and a size-segregated multicomponent aerosol algorithm, was coupled to the Weather Research and Forecasting (WRF) framework with chemistry (WRF-Chem) using an interface procedure to build the WRF/CUACE v1.0 model. The latest version of CUACE includes an updated aerosol dry deposition scheme and the introduction of heterogeneous chemical reactions on aerosol surfaces. We evaluated the WRF/CUACE v1.0 model by simulating PM2.5, O3, NO2, and SO2 concentrations for January, April, July, and October (representing winter, spring, summer and autumn, respectively) in 2013, 2015, and 2017 and comparing them with ground-based observations. Secondary inorganic aerosol simulations for the North China Plain (NCP), Yangtze River Delta (YRD), and Sichuan Basin (SCB) were also evaluated. The model captured well the variations of PM2.5, O3, and NO2 concentrations in all seasons in eastern China. However, it is difficult to accurately reproduce the variations of air pollutants over SCB, due to its deep basin terrain. The simulations of SO2 were generally reasonable in the NCP and YRD with the bias at −15.5 % and 24.55 %, respectively, while they were poor in the Pearl River Delta (PRD) and SCB. The sulfate and nitrate simulations were substantially improved by introducing heterogeneous chemical reactions into the CUACE model (e.g., change in bias from −95.0 % to 4.1 % for sulfate and from 124.1 % to 96.0 % for nitrate in the NCP). Additionally, The WRF/CUACE v1.0 model was revealed with better performance in simulating chemical species relative to the coupled Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) and CUACE model. The development of the WRF/CUACE v1.0 model represents an important step towards improving air-quality modeling and forecasts in China.

2020 ◽  
Author(s):  
Lei Zhang ◽  
Sunling Gong ◽  
Tianliang Zhao ◽  
Chunhong Zhou ◽  
Yuesi Wang ◽  
...  

Abstract. The development of chemical transport models with advanced physics and chemical schemes could improve air-quality forecasts. In this study, the China Meteorological Administration Unified Atmospheric Chemistry Environment (CUACE) model, a comprehensive chemistry module incorporating gaseous chemistry and a size-segregated multicomponent aerosol algorithm, was coupled to the Weather Research and Forecasting (WRF)-Chem framework using an interface procedure to build the WRF/CUACE v1.0 model. The latest version of CUACE includes an updated aerosol dry deposition scheme and the introduction of heterogeneous chemical reactions on aerosol surfaces. We evaluated the WRF/CUACE v1.0 model by simulating PM2.5, O3, and NO2 concentrations for January, April, July, and October (representing winter, spring, summer, and autumn, respectively) in 2013, 2015, and 2017 and comparing them with ground-based observations. Secondary inorganic aerosol simulations were also evaluated through a simulation of a heavy haze pollution event during 9–15 January 2019 in the North China Plain. The model well captured the variations of PM2.5, O3, and NO2 concentrations in all seasons in eastern China. However, it is difficult to accurately reproduce the variations of air pollutants over Sichuan Basin, due to its deep basin terrain. The sulfate and nitrate simulations are substantially improved by introducing heterogenous chemical reactions into the CUACE model (change in bias from −95.0 % to 4.1 % for sulfate and from 124.1 % to 96.0 % for nitrate). The development of the WRF/CUACE v1.0 model represents an important step towards improving air-quality modelling and forecasts in China.


Author(s):  
Pratibha L. Gai ◽  
Edward D. Boyes

Heterogeneous chemical reactions catalyzed over solid surfaces at operating temperatures are used to produce a vital part of energy, food, healthcare products, cleaner environments and chemicals.


2020 ◽  
Author(s):  
Ning Yang ◽  
Yanru Bai ◽  
Yong Zhu ◽  
Nan Ma ◽  
Qiaoqiao Wang

<p>In the last six years, China has experienced significant improvement in air quality due to great emission reduction efforts. However, ozone concentrations are still slowly increasing in three major regions of eastern China, respectively Jing-Jin-Ji(JJJ), Yangtze River Delta region(YRD) and Pearl River Delta region(PRD). It is shown from the 2015-2018 national urban air quality real-time release platform that the surface ozone in JJJ, YRD and PRD has increased each year and reached the highest in 2018. The monthly ozone concentration peaked in June in almost all cities of JJJ, while it had multiple peaks in other two regions (summer and autumn in YRD - and February, May and September in PRD). Simulation with a chemical transport model(GEOS-Chem) indicates that the formation of ozone is affected by the optical properties of PM<sub>2.5</sub> and also the heterogeneous uptake of N<sub>2</sub>O<sub>5</sub> on sea salt aerosol.</p>


Sign in / Sign up

Export Citation Format

Share Document