peristaltic transport
Recently Published Documents


TOTAL DOCUMENTS

408
(FIVE YEARS 93)

H-INDEX

51
(FIVE YEARS 6)

Author(s):  
Nabil T.M. El-Dabe ◽  
Mohamed Y. Abou-Zeid ◽  
Mahmoud E. Oauf ◽  
Doaa R. Mostapha ◽  
Yasmeen M. Mohamed

The present investigation analyzes the influence of Cattaneo–Christov heat and mass fluxes on peristaltic transport of an incompressible flow. The fluid is obeying Bingham alumina nanofluid. The fluid flows between two co-axial vertical tubes. The system is expressed by a varying radially magnetic field with respect to the space. Soret effect and non-Darcy porous medium are taken into account. The governing system of equations is tackled by utilizing the approximations of long wavelength with low Reynolds number and with the help of homotopy perturbation method (HPM). It is noticed that the axial velocity magnifies with an increase in the value of Bingham parameter. Meanwhile, the value of the axial velocity reduces with the elevation in the value of the magnetic field parameter. On the other hand, the elevation in the value of thermal relaxation time leads to a reduction in the value of fluid temperature. Furthermore, increasing in the value of mass relaxation time parameter makes an enhancement in the value of nanoparticles concentration. It is noticed also that the size of the trapped bolus enhances with the increment in the value of Bingham parameter. The current study has many accomplishments in several scientific areas like medical industry, medicine, and others. Therefore, it represents the depiction of the gastric juice motion in the small intestine when an endoscope is inserted through it.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ji-Huan He ◽  
Doaa R. Mostapha

This paper aims to present the significance of the Hall current and Joule heating impacts on a peristaltic flow of a Rabinowitsch fluid through tapered tube. The Darcy–Forchheimer scheme is used for a porous medium; a mild stenosis is considered to study the impacts of radiative heat transfer and chemical reactions. Convective conditions are postulated for heat and mass transfer. In the meantime, the slip conditions are presumed for the velocity distribution. Soret and Dufour features bring the coupled differential systems. The hypotheses of a long wavelength and low Reynolds number are employed to approximate the governing equations of motion, and finally the homotopy perturbation method is adopted for numerical study. Pumping characteristics are revealed and the trapping procedure correlated with peristaltic transport is elucidated. The present study is very important in many medical applications, such as the gastric juice motion in the small intestine and the flow of blood in arteries. The mechanism of peristaltic transport with mild stenosis has been exploited for industrial applications like sanitary fluid transport and blood pumps in heart-lung machine. The influences of various physical parameters of the problem are debated and graphically drawn across a set of figures. It is noted that the axial velocity is reduced with the increase of the Hartmann number. However, enhancing both the Rabinowitsch parameter and the Forchheimer parameter gives rise to the fluid velocity. As well, it is debated that Rabinowitsch fluid produces a cubic term of pressure gradient. Therefore, the relation between mean flow rate and the pressure rise does not stay linear. It is recognized that the temperature rises with the enhancement of both Dufour number and Soret number. Furthermore, it is illustrated that the concentration impedes with the increase of the mass transfer Biot number. Also, it is revealed that the trapped bolus contracts in size by enlarging the maximum height of stenosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samreen Sheriff ◽  
S. Ahmad ◽  
N. A. Mir

AbstractThe nano heat transport has gained much significance in recent era. The micro-level devices are enganged succssfully in diverse fields like electronics, biomedical, navel structures, manufacturing, transportation, and automotive industries in order to improve the heat transfer for cooling and heating. Owing to this fact, the current article illustrates the features of irreversibility and thermal jump in peristaltic transport of hybrid nanoliquid. Here, water is used as base liquid while nanoparticles include polystyrene and graphene oxide. The flow is carried out in a non-uniform channel where the walls of channel flexible nature. Additionally, magnetic field impacts on flow and Joule heating analysis are examined. The aspect featuring heat absorption is introduced. Nanoparticle's shapes effect is also incorporated in flow analysis. Under the consideration of small Rynold number and long wavelength, the relevent equations are reduced by implementing non-dimensional variables. Involved pertinent parameters influence the peristaltic flow characteristics are displayed graphically and discussed concisely. The result indicates that temperature curves are dominant for pure water as compared to P/water nanofluid and P-GO/water hybrid nanofluid. Moreover, the convergent channel shows least entropy effects and extreme effects are noted for divergent case whereas uniform channel stays behind the divergent one.


2021 ◽  
Vol 13 (3) ◽  
pp. 821-832
Author(s):  
S. Kumari ◽  
T. K. Rawat ◽  
S. P. Singh

The present article deals with variable viscosity on the peristaltic transport of bile in an inclined duct under the action of slip boundary conditions. The wall geometry is described by the sinusoidal wave propagating in the axial direction with different amplitude and with constant speed. The flow of fluid is examined in a wave frame of reference, moving with the velocity of the wave.  Mathematical modeling of the problem includes equations of motion and continuity. The fluid flow is investigated by converting the equations into a non-dimensionalized form simplified considering long wavelength and low Reynolds number approximation. The analytic expressions for axial velocity, pressure gradient, and pressure rise over a single wavelength cycle are obtained. The impact of various parameters such as slip parameter, viscosity parameter, angle of inclination, gravity parameter and amplitude ratio on axial velocity, pressure gradient and pressure rise are discussed in detail by plotting graphs in MATLAB R2018b software. In this article, a comparison of linear and nonlinear variation of viscosity of bile has been made. It is concluded that velocity and pressure rise is more in case linear variation of viscosity, whereas more pressure gradient is required in case of nonlinear variation of viscosity.


2021 ◽  
pp. 2714-2725
Author(s):  
Batool A. Almusawi ◽  
Ahmed M. Abdulhadi

This paper discusses Ree–Eyring fluid’s peristaltic transport in a rotating frame and examines the impacts of Magnetohydrodynamics (MHD). The results deal with  systematically (analytically) applying each of the governing equations of Ree–Eyring fluid, the axial and secondary velocities, flow rate due to auxiliary stream, and bolus. The effects of some distinctive variables, such as Hartman number, heat source/sink, and amplitude ratio, are taken under consideration and illustrated through graphs.


Sign in / Sign up

Export Citation Format

Share Document